期刊文献+

非封闭三角网格模型边界特征的自动识别 被引量:4

Automatic recognition of boundary features of non-closed triangulation model
下载PDF
导出
摘要 孔洞修补是反求工程中的重点研究内容之一,孔洞修补必须要准确定位和识别孔洞边界。非封闭三角网格模型边界和孔洞边界的识别多采用人机交互方法。提出一种新的孔洞边界自动识别方法:将边界顶点和边界网格向该边界对应的投影特征平面投影以获得边界投影多边形,利用平面几何多边形内角和知识进行自动识别,若边界投影多边形所对应的无网格部分夹角总和等于多边形的内角和则为孔洞边界,反之则为模型边界。通过实例验证,该方法能够自动识别出模型边界和孔洞边界并分离,提高了在非封闭三角网格模型中孔洞边界识别的效率。 Filling holes is one of the most important studies in reverse engineering,and before hole filling we have to locate and recognize the hole boundary features exactly.The recognistion of non-closed triangular mesh model boundary and the hole boundary may adopt man-machine interaction means.A new method of boundary auto recognition is presented in it,the boundary vertexes and boundary grid are projected onto the projection plane for corresponding projecting feature to obtain a boundary projecting polygon,which will be recognized by utilizing the sum and knowledge of polygon of plane geometry and.If the angle sum of non-mesh corresponded with the polygon boundary projected is equaled to the internal angle sum of the boundary polygon,the boundary is a hole boundary,othervise it is a model boundary.This method is verified through practical examples to be able to recognize automatically and separate the hole boundary and model boundary,which improve the working efficiency of hole boundary recognition in reverse engineering.
出处 《机械设计与制造》 北大核心 2011年第11期147-149,共3页 Machinery Design & Manufacture
基金 福建省重大科技项目资助(2007H2011) 国家自然科学基金资助(50605007)
关键词 三角网格 孔洞边界 模型边界 自动识别 Triangular mesh Hole boundary features Model boundary features Automatic recognition
  • 相关文献

参考文献10

二级参考文献39

  • 1钱锦锋,陈志杨,张三元,叶修梓.点云数据压缩中的边界特征检测[J].中国图象图形学报(A辑),2005,10(2):164-169. 被引量:39
  • 2王宏涛,张丽艳,李忠文,刘胜兰,周儒荣.基于RBF神经网络的三角网格曲面孔洞修补[J].中国机械工程,2005,16(23):2072-2075. 被引量:20
  • 3吴德会.铣削加工粗糙度的智能预测方法[J].计算机集成制造系统,2007,13(6):1137-1141. 被引量:10
  • 4GU P, YAN X. Neural network approach to the reconstruction of freeform surfaces for reverse engineering[J]. Computer-Aided Design, 1995,27 (1) : 56-64. 被引量:1
  • 5VAPNIK V N. The nature of statistical learning theory[M]. New York, N. Y. , USA-.Spring-Verlag,1999. 被引量:1
  • 6SUYKENS J A K, VANDEWALLE J. Sparse least squares support vector machines classifiers[J]. Neural Processing Letters, 1999,9 (3) : 293-300. 被引量:1
  • 7LIEPA P. Filling holes in meshes[C]//Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Aire-la-Vile, Switzerland: Eurographics Association, 2003 : 200-205. 被引量:1
  • 8Davis J,Marschner S R,Garr M, et al.Filling Holes in Complex Surfaces Using Volumetric Diffusion.First International Symposium on 3D Data Processing,Visualization,Transmission,Padua Italy,2002 被引量:1
  • 9Liepa P.Filling Holes in Meshes.The Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,Aachen,Germany,2003 被引量:1
  • 10Curless B,Levoy M.A Volumetric Method for Building Complex Models from Range Images.SIGGRAPH'96 Conference,New Orleans,Louisiana,1996 被引量:1

共引文献86

同被引文献27

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部