期刊文献+

结构识别计算中基于L曲线的模型确认方法研究 被引量:2

Methodology of L-curve based model validation in structural identification
下载PDF
导出
摘要 模型确认方法的判断标准是考察包含识别参数的模型对待识别结构进行描述的精确程度。但由于对待识别结构系统的认识不足以及计算效率的考虑,通常会产生识别参数的不当选取问题,导致模型对待识别结构的描述总是存在不完善之处;当这种不完善较显著时,传统的模型确认方法通常会失效。为此,本文结合结构识别问题的求解可采用正则化技术来改善其不适定性的特点,引入不同识别结果θ^所对应目标函数与^θ的范数之间的对应规律作为先验条件,提出了一种基于L曲线的模型确认方法,有望弥补传统模型确认方法的上述不足。以一弹簧-质量系统、BENCH-MARK结构分别作为仿真算例、试验算例,对所得模型进行了确认;结果表明:传统确认方法不能准确指出试验算例的合理模型,而基于L曲线的模型确认方法对仿真算例与试验算例均可指出合理模型;从而证明了本文研究的基于L曲线的模型确认方法的有效性。 In structural identification,parameters to be identified usually can not be selected appropriately due to the absent knowledge of the structure and to the inadequate improvement on calculation efficiency.Therefore,there is always inconsistency between the model and the structure and,when it is rather obvious,the traditional method of model validation often fails.In order to deal with the problem,a L-curve based method of model validation was proposed.In the method the condition under which regularization technique may be adopted to improve the ill-posedness of identification solutions,was exploited and,moreover,the correlation between objective functions of identification results θ^ and norms of θ^ was utilized as a priori knowledge.The proposed method is expected to improve the above mentioned disadvantage of the traditional one.Validation of the given models was carried out by using the L-curve based method,taking a spring-mass system and a BENCHMARK structure as numerical and experimental examples respectively.The results show that the traditional method could not find the best model among the obtained ones in the experimental example,while the proposed method can pick out the best one in both the numerical and experimental example,which proves the validity of the proposed L-curve based method of model validation.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第11期36-41,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(90715014) 国家自然科学基金项目(10902024) 江苏省自然科学基金项目(BK2008510) 航空科学基金项目(20090869009)
关键词 结构识别计算 模型确认 L曲线 structural identification model validation L-curve
  • 相关文献

参考文献14

  • 1Hansen P C. Regularization tools: a MATLAB pack-age for analysis and solution of discrete ill-posed problems [ J ]. Numerical Algorithms, 1994, 6(12) : 1 - 35. 被引量:1
  • 2Dyke S J, Bernal D, Beck J L, et al. An experimental BENCHMARK problem in structural health monitoring[ C ]// Third International Workshop on Structural Health Monitoring, Stanford, 2001 : 1 - 10. 被引量:1
  • 3Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems [ M ]. Washington, D C: Halsted Press, a Division of John Wiley& Sons, 1977. 被引量:1
  • 4Ljung L. System identification: theory for the user[ M]. New Jersey: Prentice-Hall Inc, 1987. 被引量:1
  • 5Friswell M I, Mottershead J E. Finite element model updating in structural dynamics [ M ]. Dordrecht/ Boston/ London: Kluwer Academic Publishers, 1995. 被引量:1
  • 6Doebling S W, Farrar C R. The state of the art in structural identification of constructed facilities [ S ]. A report by the ASCE Committee on Structural Identifi-cation of Constructed Facilities, 1999. 被引量:1
  • 7Vogel C R. Non-convergence of the L-curve regula rization parameter selection method[ J]. Inverse Prob-lems, 1996, 12 (4) : 535 -547. 被引量:1
  • 8董兴建,孟光.实验模型和有限元模型的混合建模方法[J].振动与冲击,2009,28(7):38-40. 被引量:12
  • 9Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4): 561 - 580. 被引量:1
  • 10Busby H R, Trujillo D M. Optimal regularization of an inverse dynamics problem [ J ]. Computers & Strucrures, 1997. 63(2): 243-248. 被引量:1

二级参考文献14

共引文献39

同被引文献22

  • 1刘佩,袁泉,魏庆朝.概率方法在恢复力模型参数识别中的应用分析[J].中南大学学报(自然科学版),2013,44(9):3843-3848. 被引量:1
  • 2Beck J L. Bayesian system identification based on probability logic[J]. Structural Control and Health Monitoring, 2010, 17(7): 825-847. 被引量:1
  • 3Goulet J A, Kripakaran P, Smith F C. Multimodel structural performance monitoring[J]. ASCE Journal of Structural Engineering, 2010, 136(10): 1309-1318. 被引量:1
  • 4Beck J L, Yuen K V. Mode/ selection using response measurements: Bayesian probabilistic approach[J]. ASCE Journal of Engineering Mechanics, 2004, 130(2): 192-203. 被引量:1
  • 5Mthembu L, Marwala T, Friswell M I, et al. Model selection in finite element model updating using the Bayesian evidence statistic[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2399-2412. 被引量:1
  • 6Cheung S H, Beck J L. Calculation of posterior probabilities forBayesian model class assessment and averaging from posterior samples based on dynamic system data[J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25(5): 304-321. 被引量:1
  • 7Ching J, Chen Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. ASCE Journal of Engineering Mechanics, 2007, 133(7): 816-832. 被引量:1
  • 8Cheung S H, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters[J]. ASCE Journal of Engineering Mechanics, 2009, 135(4): 243-255. 被引量:1
  • 9Muto M, Beck J L. Bayesian updating and model class selection for hysteretic structural models using stochastic simulation[J]. Journal of Vibration and Control, 2008, 14(1/2): 7-34. 被引量:1
  • 10Beck J L, Au S K. Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation[J]. Journal of Engineering Mechanics, 2000, 128(4): 380-391. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部