期刊文献+

基于Mike-Farmer委托驱动模型的研究

Mike-Farmer order-driven model
下载PDF
导出
摘要 Mike-Farmer微观模型是功能强大的委托驱动模型,能再现很多经典的统计规律.本文介绍了Mike-Farmer委托驱动模型的构建过程,Mike-Farmer委托驱动模型生成的收益率,发现收益率在不同时间尺度下遵循幂律分布,服从负三次方定律.以Mike-Farmer委托驱动模型为平台,进行收益率幂律分布和波动率聚簇效应的成因研究,发现收益率的幂律分布和市价订单委托价格的概率分布相关,而波动率的聚簇效应与订单委托价格时间序列的时间记忆性保持一致性.最后简要介绍了模型的应用前景. Mike-Farmer microscopic model is a powerful order-driven model. It can reproduce many stylized facts. In the paper, the Mike-Farmer model was introduced in detail. It was found that the distributions of returns obtained from the model at different timescales can be modeled as the power-law distribution in the tails, whose exponents are close to the well-known cubic law. The reasons for the power-law distribution of returns and the clustering effect of volatilities were then studied and it was concluded that power-law tails are caused by the power-law tail in the distribution of market order prices and the clustering effects are related to the long memory in the time series of submitting order prices. The application of the model was briefly presented.
出处 《上海理工大学学报》 CAS 北大核心 2011年第5期457-472,共16页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11075054 10905023 71101052) 上海市晨光计划人才资助项目(CG201032)
关键词 金融物理学 委托驱动模型 收益率幂律分布 波动率聚簇效应 econophysics order-driven modet power-taw distribution of returns clustering effect of volatitities
  • 相关文献

参考文献6

  • 1Lux T,Marchesi M.Scaling and criticality in astochastic multi-agent model of a financial market. Nature . 1999 被引量:1
  • 2Challet D,Marsili M,Zhang Y C.Minority Games:Interacting Agentsin Financial Markets. . 2005 被引量:1
  • 3Stauffer,D,Aharony,A. Introduction to percolation theory . 1994 被引量:1
  • 4Montroll,E. W.,Badger,W. W. Introduction to Quantitative Aspects of Social Phenomena . 1974 被引量:1
  • 5Samorodnitsky G,,Taqqu M S.Stable Non-Gaussian Ran- dom Processes:Stochastic Models with Infinite Variance. . 1994 被引量:1
  • 6周炜星著..金融物理学导论[M].上海:上海财经大学出版社,2007:271.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部