期刊文献+

基于精准农户信息的农业文本数据自动挖掘模型

Automatic Mining Model Based on the Precise Agricultural Data Information
下载PDF
导出
摘要 随着农业科技信息的泛滥,而农户又得不到其想要的农业信息,面对广大农户对农业科技信息的迫切需求,如何解决农户所需信息的精准性问题成了人们研究的热点问题。本文根据农户所需农业信息的特点,对传统特征项加权算法进行改进,提出了一种更适合农业特征项加权的算法,结合改进的算法设计一个基于精准农户信息的农业文本数据信息的自动挖掘模型。 Although the information of agricultural science and technology has been widely spread, the farmers cannot get the information that they want. Facing the urgent need that farmers ask for the right information, how to solve the precision of the information becomes the hot issue. According to the characteristics of the needed agricultural information, the traditional feature weighted algorithm is improved and then a new feature weighted algorithm which is more suitable for farming characteristics is put forward. Combining with improved weighted algorithm, it designs an automatic text mining model based on the precise agricultural data information.
出处 《热带农业科学》 2011年第9期87-89,93,共4页 Chinese Journal of Tropical Agriculture
基金 海南大学211工程中央专项资金项目
关键词 精准 农户 特征加权 文本挖掘 precision farmer feature weighting text mining
  • 相关文献

参考文献6

二级参考文献36

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 2陈文亮,朱靖波,朱慕华,姚天顺.基于领域词典的文本特征表示[J].计算机研究与发展,2005,42(12):2155-2160. 被引量:22
  • 3Baker D L,Mccallum A K.Distributional Clustering of Words forText Classification[C]//Proe.of the 21st ACM International Conference on Research and Development in Information Retrieval.Melbourne,Australia:[s.n.],1998:96-103. 被引量:1
  • 4Lewis D D.Representation and Learning in Information Retrieval[D].Boston,USA:University of Massachusetts,1992. 被引量:1
  • 5Thorsten Joachims,Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C]//European Conferrence on Machine Learning (ECML).Berlin:Springer,1998:137-142. 被引量:1
  • 6Yang Y,Liu X.A re-examination of text categorization methods[C]//The 22th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press,1999:42-49. 被引量:1
  • 7Yang Yi-ming,Pederson Jan O.A comparative study on feature se-lection in text categorization[C]//Proceedings of the 14th International Conference on Machine learning,Bled:Morgan Kaufmann,1997:258-267. 被引量:1
  • 8Zhou Yanan,Tang Jianbo,Wang Jiaqin.An improved TFIDF feature selection algorithm based on information entropy[C]//Proceedings of the 26th Chinese Control Conference,CCC 2007:312-315. 被引量:1
  • 9Shouning Qu,Sujuan Wang,Yan Zou.Improvement of Text Feature Selection Method based on TFIDF[C]//International Seminar on Future Information Technology and Management Engineering.2008:79-81. 被引量:1
  • 10Yang Chengcheng,He Xingshi.A text feature selection algorithm based on improved TFIDF[C]//Proceedings of the 2008 Chinese Conference on Pattern Recognition,CCPR 2008:416-419. 被引量:1

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部