期刊文献+

基于高斯混合模型的咳嗽音检测方法 被引量:9

Cough sound detection algorithm based on Gaussian mixture model
下载PDF
导出
摘要 快速准确地检测出采集录音中的咳嗽部分对许多呼吸道疾病的临床诊断有着重要意义。使用梅尔频率倒谱系数(MFCC)作为特征参数来分析所要处理的声音信号,并用多组训练数据分别为采集录音中的咳嗽音、说话声、笑声、清喉音等数据各建立两个高斯混合模型(GMM),将每类数据得到的两个GMM进行线性组合得到最终的表示每类数据的概率模型,进而实现对咳嗽音部分的检测。在此基础上引入了小波去噪理论,分别对每段数据去噪并进行端点检测。仿真实验结果表明所提方法能够有效提高系统的识别性能。 Rapid and precise detection of cough sound from continuous recordings is meaningful for clinical diagnosis of many respiratory diseases.This paper uses Mel-frequency cepstral coefficient as the classification feature to analyze the sound signal to be processed and creates two corresponding Gaussian mixture models for the cough sound, speech voice,laughter and throat clearing sound in the recordings respectively using multiple groups of training data,then the ultimate probability models are acquired through the means of linear combination of the two GMMs of each class.Furthermore, the theory of wavelet denoising is introduced to denoise each sound signal and then detect its endpoints.Simulation experimental results indicate that the proposed method can effectively improve the performance of the detection.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第32期151-154,共4页 Computer Engineering and Applications
关键词 咳嗽音检测 梅尔频率倒谱系数 高斯混合模型 线性组合 小波去噪 cough sound detection Mel-frequency cepslral coefficient Gaussian mixture model linear combination wavelet denoise
  • 相关文献

参考文献7

  • 1Shin S H, Hashimoto T, Hatano S.Automatic detection system for cough sounds as a symptom of abnormal health condition[J]. IEEE Transaction on Information Technology In Biomedicine, 2009,13 (4) : 486-493. 被引量:1
  • 2Hsu J Y, Stone R A, Logan-Sinclair R B, et al.Coughing fre- quency in patients with persistent cough: assessment using a 24 hour ambulatory recorder[J].European Respiratory Journal, 1994,7(7) : 1246-1253. 被引量:1
  • 3Chung K F.Measurement of cough[J].Respiratory Physiology & Neurobiology, 2006,152 (3) : 329-339. 被引量:1
  • 4Matos S,Birring S S,Pavord I D,et al.Detection of cough sig- nals in continuous audio recordings using hidden Markov mod- els[J].IEEE Transactions on Biomedical Engineering, 2006, 53 (6) .. 1078-1083. 被引量:1
  • 5Reynolds D A,Rose R C.Robust text-independent speaker identi- fication using gaussian mixture speaker models[J].IEEE Transac- tions on Speech and Audio Processing, 1995,3 ( 1 ) : 72-83. 被引量:1
  • 6Korpas J, Sadlonova J, Vrabec M.Analysis of the cough sound: an overview[J].Pulmonary Pharmacology, 1996,9 (5/6) : 261-268. 被引量:1
  • 7Jain A K, Duin R P W, Mao J.Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 ) : 4-37. 被引量:1

同被引文献81

  • 1HSU J Y, STONE R A, LOGAN-SINCLAIR R B, et al. Coughing frequency in patients with persistent cough: assess- ment using a 24 hour ambulatory recorder [J]. Eur Respir J, 1994, 7(7).. 1246-1253. 被引量:1
  • 2SUBBURAJ S, PARVEZ L, RAJAGOPALAN T G. Meth- ods of recording and analyzing cough sounds [J]. Pulm Phar- macol, 1996, 9(5-6): 269-279. 被引量:1
  • 3CHANG A B, NEWMAN R G, PHELAN P D, et al. A new use for an old Holter monitor: an ambulatory cough meter [J]. EurRespirJ, 1997, 10(7): 1637-1639. 被引量:1
  • 4MATOS S, BIRRING S S, PAVORD I D, et al. Detection of cough signals in continuous audio recordings using hidden Markov models [J]. IEEE Trans Biomed Eng, 2006, 53(6) : 1078-1083. 被引量:1
  • 5MATOS S, BIRRING S S, PAVORD I D, et al. An automa- ted system for 24-h monitoring of cough frequency: the leices- ter cough monitor [J]. IEEE Trans Biomed Eng, 2007, 54 (8) .. 1472-1479. 被引量:1
  • 6SHIN S H, HASHIMOTO T, HATANO S. Automatic de- tection system for cough sounds as a symptom of abnormal health condition [J]. IEEE Trans Inf Technol Biomed, 2009, 13(4) .. 486-493. 被引量:1
  • 7BARRY S J, DANE A D, MORICE A H, et al. The auto- matic recognition and counting of cough [J]. Cough, 2006, 2 (1) .. 8. 被引量:1
  • 8PICONE J W. Signal modeling techniques in speech recogni- tion[J]. Proceedings of thelEEE, 1993, 81(9): 1215-1247. 被引量:1
  • 9ZHU Chunmei, TIAN Lianfang, LI Xiangyang, et al. Recog- nition of cough using features improved by sub-band energy transformation [C]// BMEI 2013: 6th International Confer- ence on Biomedical Engineering and Informatics. Hangzhou, China: 2013, 2013: 251-255. 被引量:1
  • 10KORPA.S J, SADLONOVA J, VRABEC M. Analysis of the cough sound: an overview [J]. Pulm Pharmacol, 1996, 9(5- 6) : 261-268. 被引量:1

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部