期刊文献+

基于离散粒子群算法的织物疵点特征选择 被引量:4

Fabric defect feature selection based on binary partial swarm optimization
下载PDF
导出
摘要 为提高识别织物疵点的准确率,提出基于离散粒子群算法(BPSO)进行织物疵点特征选择的方法。首先收集织物疵点图像并进行预处理,提取常用的纹理特征构成候选特征。然后采用BPSO对这些候选特征进行选择,得到优选特征和冗余特征。最后分别在这3类特征下训练支持向量机并进行织物疵点识别测试。结果表明,优选特征的疵点识别准确率大大高于另外2类特征,验证了这种方法是有效的。 To improve the accuracy of fabric defect recognition,a texture feature selection method for defeat recognition was proposed based on binary partial swarm optimization(BPSO).Firstly defect images were collected and preprocessed,and the texture features to form candidate features were extracted.Then BPSO was applied to select optimal features and redundant features from the candidate features.Finally,the support vector machine(SVM) was trained with these three features to classify defects,respectively,and trial test of fabric defeats recognition was conducted with the SVM.The experiment resultes show that the classification accuracy of optimal features is much higher than those of the other two features,demonstrating that the method is feasible and effective for feature selection of fabric defects.
出处 《纺织学报》 EI CAS CSCD 北大核心 2011年第11期53-57,共5页 Journal of Textile Research
基金 国家"863"高技术研究发展计划资助项目(2007AA01Z187) 国家自然科学基金资助项目(60775029) 浙江省自然科学基金资助项目(Y1100036) 浙江省教育厅科研计划资助项目(Y201016929) 浙江省高校优秀青年教师资助计划项目(2010)
关键词 离散粒子群算法 织物疵点 特征选择 支持向量机 binary partial swarm optimization fabric defect feature selection support vector machine
  • 相关文献

参考文献10

二级参考文献31

  • 1陈俊杰,谢春萍.基于神经网络的织物疵点识别技术[J].纺织学报,2006,27(4):36-38. 被引量:14
  • 2Michael Unser. Texture classification and segmentation multiresolution autoregressive models [ J ]. Pattern Recognition, 1998, 25(2) : 173 - 188. 被引量:1
  • 3Jin-Seon, Ching Y. Analysis of class separation for handwriting recognition[J]. [EEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 (10) : 1089 - 1094. 被引量:1
  • 4章敏晋.图像处理和分析[M].北京:清华大学出版社,2003.43-132. 被引量:1
  • 5M Dash,H Liu.Feature Selection for Classification. Department of Information System & Computer Science ,National University of Singapore 被引量:1
  • 6J Hah.Conference tutorial notes:data mining techniques[C].In:Proceedings of ACM SIGMOD International Coference'96 on Management of Data (SIGMOD'96), Montreal, Canada, 1996-06 被引量:1
  • 7R Setiono. A penalty fuction approach for feedforward neural networks[J].Neural Computation, 1997 ;9( 1 ): 301~320 被引量:1
  • 8Rohit Lotlikar,Ravi Kothari.Bayes-Optimality Motivated Linear and Multilayered Perceptron-Based Dimensionality Reduction[J].IEEE TRANSCATIONS ON NEURAL NETWORKS,2000; 11 (2) 被引量:1
  • 9谷口庆治 朱虹 瘳学成 乐静 译.数字图像处理[M].北京:科学出版社,2002.. 被引量:11
  • 10边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283. 被引量:143

共引文献59

同被引文献23

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部