期刊文献+

格子行走方法求解一维对流扩散方程 被引量:2

Lattice-walk method for the convection-diffusion equation
下载PDF
导出
摘要 本文提出了全新的格子行走方法求解对流扩散方程.对流扩散方程广泛应用于水中污染物的运移模拟.然而在对流占优的情况下,常用的求解对流扩散方程的有限差分方法和有限元法会出现严重的数值弥散和数值振荡等不良数值现象.本文提出的格子行走方法,综合了随机行走方法(random walk method)和格点玻尔兹曼方法(lattice Boltzmann method)的优点,有效克服了对流占优条件下的数值弥散现象.在给定格子长度和时间步长的情况下,格子行走方法所能计算的流速范围远远超过了有限差分方法的适用范围.格子行走方法构建了相邻时刻格点上溶质分布的转移矩阵(transition matrix),使得格点上的离散分布与高斯分布的0-2阶矩相等.通过转移矩阵,可以直接计算溶质分布随时间的变化过程.本文用一维瞬时点源模型和一维连续点源模型检验了格子行走方法的适用性.计算结果显示格子行走方法得到的结果与解析解吻合得非常好,而运用有限差分方法却出现严重的数值弥散. This paper presents a novel lattice-walk method to simulate the convection-diffusion equation. The convection diffusion equation is widely used to describe solute transport. However, conventional methods, e.g. the finite difference method or the finite element method, to solve this equation may result in numerical dispersion and oscillation, especially when convection velocity is large. The lattice-walk method combines the virtues of random walk method and lattice Boltzmann method (LBM), to simulate convection-diffusion prbeess. The positions of solute particles are limited on lattice points and the jumping probability of particles on regular lattices is determined by Gaussian distribution of random walk. We construct the transition matrix by the equality of the moments (the zeroth, first and second order) of discrete distribution on By iteration, we can calculate the evolution of the concentration Then one-dimensional instantaneous point source model and constant concentration point source model are used to test this novel method. The results of one dimensional instantaneous point source model are shown. When convection dominates the convection-diffusion process, the result given by lattice-walk method agrees well with the analytical solution while the solution of finite difference method suffers from serious numerical dispersion. For the diffusion-dominated example, the concentration obtained from lattice-walk method is consistent with that from finite difference method. Therefore we can see the most important character of lattice walk method that it can simulate solute transport at convection velocities far beyond the range of conventional methods. The results of constant concentration point source model are shown. Our results of lattice-walk method agree well with analytical solutions and have little dispersion in the front of the concentration curve. However, the concentration obtained by finite difference method suffers rather serious numerical dispersion even if Pe number is not too large. There
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期276-280,共5页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(40725010 40672160)
关键词 格子行走 随机行走 对流扩散方程 lattice-walk random walk convection-diffusion equation
  • 相关文献

二级参考文献22

  • 1Bear J. Dynamics of Fluids in Porous Media. New York: American Elsevier, 1972, 822. 被引量:1
  • 2Risken H. The Fokker-Planck Equation. Ber- . lin: Springer-Verlag, 1984, 48-70. 被引量:1
  • 3Jazwinski A H. Stochastic Process and Filtering Theory. New York: Academic Press, 1970, 126-131. 被引量:1
  • 4Boon J P, Grosfils P, Lutsko J F. Propagation- dispersion equation. Journal of Statistical Phys- ics, 2003, 113(3--4): 527-548. 被引量:1
  • 5Jiang J G, Wu J C. Lattice-walk method for the convection diffusion equation. Journal of Nan- iing University(Natural Science), 2011, 47(3)276-280. 被引量:1
  • 6Berkowitz B, Cortis A, Dentz M, etal. Model- ing non-Fickian transport on geological forma- tions as a continuous time random walk. Review of Geophysics, 2006, 44 (2): RG2003, 10. 1029/2005RG000178. 被引量:1
  • 7Berkowitz B, Cortis A, Dror I, etal. Laborato- ry experiments on dispersive transport across in- terfaces: The role of flow direction. Water Re- sources Research, 2009, 45.. W02201, doi: 10. 1029/2008WR007342. 被引量:1
  • 8Cortis A, Gallo C, Seher H, et al. Numerical simulation of non-Fickian transport in geological formations with multiple scale heterogeneities. Water Resources Research, 2004, 40: W04209, doi: 10. 1029/2003WR002750. 被引量:1
  • 9Kinze[bach W. The random walk method in pol- lutant transport simulation. Custodio E, Reidel D. Groundwater flow and quality modeling. Netherlands.. Dordrecht, 1988, 227-245. 被引量:1
  • 10Metzler R, Klafter J. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Physics Report, 2000, 339: 1-77. 被引量:1

共引文献2

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部