期刊文献+

改进反向粒子群算法及其在噪声中的应用 被引量:5

Opposition-based particle swarm optimization with random factor for noisy problems
下载PDF
导出
摘要 粒子群优化算法规则简单,收敛速度较快,但易陷入局部最优值,在噪声问题中也显示出较差的寻优能力.针对算法存在的不足,本文结合反向学习机制较快的学习速度及优化能力,并在算法进化过程中引入交叉因子,提出一种新的改进的反向粒子群算法(COPSO).实验表明,该算法在噪声问题中要优于反向粒子群算法. Particle swarm optimization was proved to have the fast convergence and simple regulatioza. However itwas easily trapped into the local optima and shown the poor ability in the noisy problems. An improved algorithm is presented in this paper. Opposition-based learning which accelerate the learning and searching process and corm-factor are employed in the algorithm. Experimental results on the test functions are shown that the algorithm is superior to OPSO in the noise problems.
出处 《西安工程大学学报》 CAS 2011年第5期721-725,共5页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅自然科学基金项目(2010JK563)
关键词 粒子群算法 反向学习算法 交叉因子 噪声 particle swarm optimization opposition-based learning corro-factor noise
  • 相关文献

参考文献9

  • 1EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[ C]. Proceedings of the 16th International Sympo- sium on Micro Machine and Human Science, Nagoya, Japan, 1995:39-43. 被引量:1
  • 2DAS S, KONAR A, CHAKRABORTY Uday K. Improved differential evolution algorithms for handling noisy optimization problems[ C ]. Proceedings of IEEE Congress on Evolutionary Computation ,2005:1 691-1 698. 被引量:1
  • 3GOLDBERG D E. Genetic algorithms in search, optimization, and machine learning[ M ]. New York : Addison-Wesley, 1989. 被引量:1
  • 4KENNEDY J, CLERC M. The particle swarm explosion, stability, and convergence in a multidimensional complex space [ J]. IEEE Transactions on Evolutionary Computation,2002,6( 1 ) :58-73. 被引量:1
  • 5KRINK T,FILIPIC B, GARY B,et al. Noisy optimization problems-A p articular challenge for differential evolution [ C]. Proeeedings of IEEE Congress on Evolutionary Computation ,2004:332-339. 被引量:1
  • 6TIZHOOSH H R, Opposition-based learning: A new scheme for machine intelligence [ C ]. Proceeding of Conference on Computing Intelligence, Modeling Control and Automation, Vienna, Austria,2005:695-701. 被引量:1
  • 7TANG Jun,ZHAO Xiaojun. On the improvement of opposition-based differential evdution[C]. INCN htemational Conference on Natural Computation ,2010:2 407-2 411. 被引量:1
  • 8MOHAMMAD S N,MOHAMMAD R. Plow PSO: A novel approach to effectively initializing particle swarm optimization[ C]. Proceedings of the IEEE Congress on Evolutionary Computation,2010:705-709. 被引量:1
  • 9WANG H, LIU Y, ZENG S, et al. Opposition-based particle swarm algorithm with cauchy mutation [ C ]. Proceedings of the IEEE Congress on Evolutionary Computation,2007:4 750-4 756. 被引量:1

同被引文献62

  • 1汪远东,徐禄文,沈加曙.变电站环境噪声预测研究[J].环境工程,2012,30(S1):179-181. 被引量:6
  • 2徐禄文.户外变电站噪声预测及优化控制设计[J].噪声与振动控制,2013,33(1):152-156. 被引量:13
  • 3周勃,陈长征,王长龙,张宇.冷却塔的噪声控制研究[J].暖通空调,2007,37(3):75-78. 被引量:19
  • 4TIZHOOSH H R. Opposition-based !earning:a new scheme for ma- chine intelligence [ C ]//Proc of International Conference on Compu- tional Intelligence for Modeling, Control and Automation. 2005:695- 701. '. 被引量:1
  • 5WANG Hui, LI Hui, LIU Yong,et a/.Opposition,based particle swarm algorithm with cauehY mutation [ G]//Procof IEEE Congress on Evo- lutionary Computation. 2007:4750-4756. 被引量:1
  • 6SHI Y, EBERHART R. A modified particle swarm optimizer [ C ]/! proc of IEEE Intenational Conference on Evolutionary Computation, Proceedings. 1998:69-73. 被引量:1
  • 7SAMAL N R,KONAR A,DAS S,et al. A closed loop stability analysis and parameter selection of the particle awarm optimization dyna-mics for faster convergebce [ C ]//Proc of IEEE Congress on Evolutionary Computation. 2007 : 1769-1776. 被引量:1
  • 8CLEBC M, The Swarm and the queen: towards a deterministic and adaptive particle swarm 0Ptimlzation C]//Proc of Congress on Evolu- tionary Computation. Piscataway, NJ: IEEE Press, 1999 : 1951 - 1957. 被引量:1
  • 9CHEN Dong,WANG Gao-feng,CHEN Zhe-yi. The inertia weight self- 'adapting in PSO[ C]//Proc of the 7th World Congress on Intelligent Control and Automation. 2008:5313-5316. 被引量:1
  • 10FENG C S,CONG S,FENG X Y. A new adaptive inertia weight strategy in particle swarm optimization[ C]//Proc of IEEE Congress on Evolu- o Cop,io. 2007:4186-4190. 被引量:1

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部