期刊文献+

一种求解最短枝切长度问题的学习算法 被引量:1

A Learning Algorithm for Shortest Branch Cut Length Problem
原文传递
导出
摘要 枝切法是一种高效的抗噪声相位展开方法,而最短枝切长度能够保证最优的相位展开结果.最短枝切长度问题属于组合优化问题,提出一种求解该问题的学习算法,将最短枝切长度问题的解视为个体,该算法通过个体之间的学习以及个体自身的变异实现进化,作用类似于遗传算法中的交叉算子以及变异算子.通过对多幅含噪声包裹相位图进行实验验证,该算法比传统的求解最短枝切长度问题的算法更快更优. Branch cut method is an effcient noise-immune algorithm for correct phase unwrapping of noisy phase maps. The shortest branch cut length promises the optimal unwrapping of the wrapped phase maps. The shortest branch cut length problem belongs to combinatorial optimizations. A learning algorithm is proposed to resolve the problem. One solution for the problem is one individual for the algorithm. Individuals learn from other individuals and mutate by themselves to realize the evolution, which is similar to the crossover and mutation operator in the genetic algorithm. Compared with the traditional methods, the learning algorithm is fast and competitive.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第5期645-650,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60775025) 江苏省自然科学基金(BK2010058)资助项目
关键词 最短枝切长度问题 相位展开 组合优化 学习算法 Shortest Branch Cut Length Problem, Phase Unwrapping, Combinatorial Optimization,Learning Algorithm
  • 相关文献

参考文献1

二级参考文献13

  • 1谭皓,王金岩,何亦征,沈春林.一种基于子群杂交机制的粒子群算法求解旅行商问题[J].系统工程,2005,23(4):83-87. 被引量:19
  • 2郭文忠,陈国龙.求解TSP问题的模糊自适应粒子群算法[J].计算机科学,2006,33(6):161-162. 被引量:25
  • 3钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,26(6):88-94. 被引量:48
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimization// Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995 : 1942 - 1948. 被引量:1
  • 5Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory// Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995 : 39 -45. 被引量:1
  • 6Poli R. An Analysis of Publications on Particle Swarm Optimization Applications. Technical Report, CSM-469, Essex, UK: University of Essex. Department of Computer Science, 2007. 被引量:1
  • 7Kennedy J, Eberhart R. A Discrete Binary Version of the Particle Swarm Algorithm//Proc of the World Multi-Conference on Systemics, Cybernetics and Informatics. Piscataway, USA, 1997:4104-4109. 被引量:1
  • 8Jarboui B, Damak N, Siarry P, et al. A Combinatorial Particle Swarm Optimization for Solving Multi-Mode Resource-Constrained Project Scheduling Problems. Applied Mathematics and Computation, 2008, 195(1): 299 -308. 被引量:1
  • 9Lian Zhigang, Gu Xingsheng, Jiao Bin. A Novel Particle Swarm Optimization Algorithm for Permutation Flow-Shop Scheduling to Minimize Makespan. Chaos, Solitons & Fractals, 2008, 35 (5) : 851 - 861. 被引量:1
  • 10Tseng C T, Liao C J. A Discrete Particle Swarm Optimization for Lot-Streaming Flowshop Scheduling Problem. European Journal of Operational Research, 2008, 191 (2) : 360 - 373. 被引量:1

共引文献3

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部