期刊文献+

基于符号相对熵的心电信号时间不可逆性分析 被引量:2

Time irreversibility analysis of ECG based on symbolic relative entropy
原文传递
导出
摘要 心电图(ECG)信号的时间不可逆性能够反映出心脏的生理功能和健康状态.从短时ECG信号中探测时间不可逆性特征具有重要的现实意义.文章提出符号相对熵方法(先进行符号化处理,再分别计算它们的时间不可逆性),研究了从MIT-BIH标准数据库中提取的正常窦性心律(normal sinus rhythm,NSR)、心室纤颤(ventricular fibrillation,VF)、心脏猝死(sudden cardiac death,SCD)三种信号.结果表明,这三种信号的时间不可逆性有所不同:NSR信号的时间不可逆性变化范围最大,VF信号次之,SCD信号最小;并且强度依次变小.方差检验结果表明,此方法得出的三种信号的时间不可逆性具有显著差异,对患者进行快速诊断和辅助治疗有积极的作用. Time irreversibility of electric cardiac graph(ECG) signal can reflect the physiological function and the health condition of the heart.In this paper,we propos a symbolic relative entropy method (first symbolizing and then determining the time irreversibility) to analyze the three kinds of ECG signals,i.e.,normal sinus rhythm,ventricular fibrillation and sudden cardiac death from the MIT-BIH database.The results show that three kinds of signals have different time irreversibilityies,and the time irreversibility range is largest for the normal sinus rhythm,the second largest for the ventricular fibrillation,and smallest for the sudden cardiac death.Variance test results indicate that the irreversibilities of the three signals are significantly different.The results show that the relative entropy method can play a positive role in heart disease detection and diagnosis.
作者 沈韡 王俊
机构地区 南京邮电大学
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第11期744-747,共4页 Acta Physica Sinica
关键词 心电信号 相对熵 时间不可逆性 ECG signal relative entropy time irreversibility
  • 引文网络
  • 相关文献

参考文献14

  • 1Josephson M E,Callans D J, Buxton A E 2000 Ann. Intern Med. 133 901. 被引量:1
  • 2Bian C H,Ning X B 2004 Chin. Phys. 13 633. 被引量:1
  • 3Ning X B,Bian C H,Wang J,Chen Y 2006 Chin. Sci. Bull. 51 385. 被引量:1
  • 4Costa M,Goldberger A L,Peng C K 2005 Phys. Rev. Lett. 95 198102. 被引量:1
  • 5Porta A, Guzzetti S, Montano N, Gnecchi-Ruscone T, Furlan R, Malliani A 2006 Computers in Cardiol. 33 77. 被引量:1
  • 6Camillo C, Enrico R 2007 Chaos 32 1649. 被引量:1
  • 7Costa M,Peng C K,Goldberger A L 2008 Cardiovasc Eng. 8 88. 被引量:1
  • 8Daw C S, Finney C E A 2003 Rev. Sci. Instrum 74 915. 被引量:1
  • 9Guzzettl S, Borronl E, Garbelll P E, CeTiani E, Bella P D, Montano N, Cogliati C, Somers V K, Mallani A, Porta A 2005Circulation 112 465. 被引量:1
  • 10Thomas MC,Joy AT著阮吉寿、张华译.2007.信息论基础.北京:机械工业出版社.第13-14页. 被引量:1

同被引文献21

  • 1Iasemidis L D,Shiau D S,Chaovalitwongse W,et al.Adaptive epileptic seizure prediction system[J].IEEE Transactions onBiomedical Engineering,2003,50(5):616-627. 被引量:1
  • 2Gadhoumi K,Lina J M,Gotman J.Discriminating preictal and interictal states in patients with temporal lobe epilepsy usingwavelet analysis of intracerebral EEG[J].Clinical Neurophysiology Official Journal of the International Federation of ClinicalNeurophysiology,2012,123(10):1906-1916. 被引量:1
  • 3Vejmelka M,Palus M.Inferring the directionality of coupling with conditional mutual information[J].Physical Review E Sta-tistical Nonlinear & Soft Matter Physics,2008,77(2):026214. 被引量:1
  • 4Schreiber T.Measuring information transfer[J].Physical Review Letters,2000,85(2):461-464. 被引量:1
  • 5Faes L,Nollo G.Decomposing the transfer entropy to quantify lag-specific Granger causality in cardiovascular variability[C]∥Inter-national Conference of the IEEE Engineering in Medicine and Biology Society.[S.l.]:IEEE,2013:5049-5052. 被引量:1
  • 6Eichler M.Graphical modelling of multivariate time series[J].Probability Theory and Related Fields,2012,153(1/2):233-268. 被引量:1
  • 7Kostelich E J.The analysis of chaotic time-series data[J].Systems & Control Letters,1997,31(5):313-319. 被引量:1
  • 8Wessel N,Ziehmann C,Kurths J,et al.Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dy-namics and finite-time growth rates[J].Physical Review E Statistical Physics Plasmas Fluids & Related InterdisciplinaryTopics,2000,61(1):733-739. 被引量:1
  • 9Staniek M,Lehnertz K.Symbolic transfer entropy[J].Physical Review Letters,2008,100(15):3136-3140. 被引量:1
  • 10Runge J,Heitzig J,Petoukhov V,et al.Escaping the curse of dimensionality in estimating multivariate transfer entropy[J].Physical Review Letters,2012,108(25):1-5. 被引量:1

引证文献2

二级引证文献10

相关主题

;
使用帮助 返回顶部