期刊文献+

约化场强对氮-氧混合气放电等离子体演化特性的影响 被引量:18

Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N_2/O_2 discharge
原文传递
导出
摘要 采用零维等离子体动力学模型,计算了不同约化场强条件下N2/O2放电等离子体的演化特性.结果表明,平均电子能量与约化场强有着近似的线性关系,在约化场强为100Td时,平均电子能量约为2.6eV、最大电子能量达35eV;约化场强是影响电子能量函数分布的主要因素.气体放电过程结束后,振动激发态氮分子的粒子数浓度不再变化,电子激发态的氮分子、原子和氧原子的粒子数浓度达到一峰值后开始降低;放电结束后的氧原子通过复合反应生成臭氧.约化场强升高,由于低能电子减少的影响,振动激发态氮分子的粒子数浓度降低,当约化场强由50Td增加75Td,100Td时,粒子数浓度由3.83×1011cm-3降至1.98×1011cm-3和1.77×1011cm-3,其他粒子浓度则相应增大. Adopting the plasma kinetic model,we perform a numerical calculation of evolution characteristics in N2/O2 plasma with various reduced electric fields.The results show that there is an approximate linear relation between electron average energy and reduced electric field,the electron average energy is 2.6 eV and its maximum is 35 eV when reduced electric field is 100 Td,and reduced electric field has a strong influence on electron energy distributing function.The number densities of nitrogen molecules and atoms,oxygen atoms in electronic excited state reach their peaks when discharge is over,then drop off;but the number density of nitrogen molecules in vibrational excitation remains unchanged after discharge;oxygen atoms recombine into ozone molecules.With the increase of reduced electric field,the number density of vibration excitated nitrogen molecules reduces because of the decrease of the number of electrons with low energy,but other particles are increasing.The number densities of vibrational excitated nitrogen molecules are 3.83×1011cm-3,1.98×1011cm-3 and 1.77×1011 cm-3 when reduced electric fields are set to be 50 Td,75 Td and 100 Td respectively.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第11期449-454,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50776100)资助的课题~~
关键词 等离子体 约化场强 粒子演化 数值模拟 plasma reduced electric field particle evolution numerical simulation
  • 相关文献

参考文献12

  • 1兰宇丹 何立明 丁伟 王峰.物理学报,59:2617-2617. 被引量:1
  • 2吕瑛 陈熙萌 曹柱荣 吴卫东.物理学报,59:3892-3892. 被引量:1
  • 3丁伟,何立明,宋振兴.常压空气介质阻挡放电的能量传递过程[J].高电压技术,2010,36(3):745-751. 被引量:18
  • 4Niessen W, Wolf O, Schruft R 1998 J. Phys. D: Appl. Phys. 31 542. 被引量:1
  • 5Mintusov E, Serdyuchenko A, Choi I, Lempert W R, Adamovich I V 2008 46th Aerospace Sciences Meeting and Exhibit, 7-10 January 2008, Reno, NV. AIAA 2008-1106. 被引量:1
  • 6Mruthunjaya U 2008 Doctor Dissertation, Ohio State University USA. 被引量:1
  • 7Shibkov V M, Konstantinovskij R S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January 2005, Reno, Nevada. AIAA 2005-987. 被引量:1
  • 8Flitti A, Pancheshnyi S 2009 The Euro. Phys. J. Appl. Phys. 45 21001. 被引量:1
  • 9Bozhenkov S A, Starikovskaia S M, Starikovskii A Y 2003 Combust. and Flame 133 133. 被引量:1
  • 10Pancheshnyi S, Eismann B, Hagelaar G J M, Pitchford L C 2008 University of Toulouse, LAPLACE CNRS-UPS-INP , Toulouse, France. 被引量:1

二级参考文献8

共引文献17

同被引文献144

引证文献18

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部