摘要
建立了强激光辐照下铝蜂窝夹芯结构的有限元模型,运用热/力序贯耦合方法对其温度场和力学行为进行了分析;研究了在激光功率一定的情况下,防热层的厚度、导热系数和比热容对夹芯结构温升的影响;分析了具有防热层夹芯结构的热变形及上面板和芯层的等效应力的变化规律.结果表明:防热层的导热系数对夹芯结构的温度场影响最大;在一定范围内,防热层的比热容对夹芯结构的温度场影响较小;经激光辐照后,夹芯结构上面板和芯层光斑中心处的等效应力略超相应的屈服强度,随后缓慢下降;夹芯结构的热变形主要发生在光斑中心处.最后将有无防热层的夹芯结构的温升和变形进行了比较,发现防热层对夹芯结构的温升和变形具有缓解和抑制作用.
In this paper, a finite element model is established to describe the intense laser-irradiated sandwich structure with aluminum honeycomb cores, and its temperature field and mechanical properties are analyzed by means of the sequential thermal-mechanical coupling. Moreover, the influence of the thickness, thermal conductivity and specific heat capacity of the heat shield on the temperature rise of the sandwich structure is investigated under the condition of a certain laser power. The thermal deformation of the sandwich structure with heat shield and the equivalent stresses of the top face sheet and the honeycomb core are also discussed. The results indicate that the thermal conductivity of the heat shield has the greatest effect on the temperature field of the sandwich structure, while the specific heat capacity of heat shield within a certain range has a less effect, that, after the irradiation, the equivalent stresses of the top face sheet and the honeycomb core in the center of laser spot slightly exceed the corresponding yield strength and then slowly decrease, and that the thermal deformation of the sandwich structure mainly occurs in the center of the laser spot. Finally, the temperature rises as well as the thermal deformations of the sandwich structure with and without heat shield are compared, thus finding that the heat shield relieves and inhibits the temperature rise and the deformation.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第9期97-102,127,共7页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(90716005
10802055
10972153
11072166)
华南理工大学中央高校基本科研业务费专项资金资助项目(2009ZM0098)
山西省自然科学基金资助项目(2009011059211)
关键词
夹芯结构
热冲击
温度场
热变形
sandwich structure
thermal impact
temperature field
thermal deformation