期刊文献+

超混沌Lorenz系统的电路模拟与同步 被引量:2

A hyperchaotic Lorenz system circuit simulation and synchronization
下载PDF
导出
摘要 对Lorenz系统添加一个非线性状态反馈控制器所构成的四维超混沌Lorenz系统,并运用数值模拟和理论分析的方法研究该超混沌系统丰富的动力学特性,同时运用PSPICE和MATLAB软件设计电子电路以实现超混沌系统,并且所得电路仿真结果与数值仿真结果完全一致;然后提出自适应控制器以实现超混沌同步;最后运用Lyapunov理论与数值模拟证实所设计的控制器的有效性. A new hyperchaotic Lorenz system was constructed by introducing a nonlinear state feedback controller, and its abundant dynamic behavior was studied by using numerical simulations and theory analysis. At the same time, by means of PSPICE and MATLAB, an electronic circuit was designed to realize the hyperchaotic Lorenz system and the circuit simulations obtained were identical with the numerical simulations. Moreover, the adaptive controller was proposed to achieve hyperchaotic synchronization. It is concluded that by means of Lyapunov theory and numerical simulation the controller designed is effective.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期120-126,共7页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by the Foundation for College Tutor's Research Project of Gansu Province(1013-05)
关键词 超混沌LORENZ系统 电路模拟 超混沌同步 自适应控制 hyperchaotic Lorenz system circuit simulation hyperchaotic synchronization adaptive control
  • 相关文献

参考文献11

二级参考文献156

共引文献226

同被引文献16

  • 1彭国俊.一个混沌系统的霍普夫分叉分析[J].柳州师专学报,2007,22(1):124-126. 被引量:4
  • 2李险峰,张建刚,褚衍东,常迎香.一个新类Lorenz混沌系统的动力学分析及电路仿真[J].动力学与控制学报,2007,5(4):324-329. 被引量:10
  • 3CHEN G. Controlling Chaos and Bifurcation in Engineer- ing Systems [ M ]. Boca Raton. FL: CRC Press,2000. 被引量:1
  • 4CHEN G, DONG X. From chaos to Order : Methodologies, Perspectives and Applicatios [ M ]. Singapore : World Sci- ence, 1998. 被引量:1
  • 5BAGHIOUS E H,JARRY P. Lorenz attractor from differ- ential equations with piecewise linear terms [ J ]. Int J of Bifurcation and Chaos, 1993,3 ( 1 ) : 201-210. 被引量:1
  • 6ELWAKIL A S, KENNEDY M P. Construction of classes of circuit-independent chaotic Oscillators using Passive only nonlinear devices [ J ]. IEEE Trans Circuits Syst, 2001,48:289-307. 被引量:1
  • 7SPARROW C. The Lorenz equations: bifurcations, cha- os, and strange attractors [ M ]. New York : Springer, 1982. 被引量:1
  • 8LIU Y, YANG Q. Dynamics of a new Lorenz-like chaotic systems [ J ]. Nonl Anal: RWA, 2010,11 ( 4 ) :2563-2572. 被引量:1
  • 9MOGHTADEI M, GOLPAYEGNI M R H. Complex dy- namic behaviors of the complex Lorenz system [ J ]. Sci- ence Iranica D ,2012,19( 3 ) :733-738. 被引量:1
  • 10LIU C, LIU L, LIU T, et al. A new butterfly-shaped at- tractor of Lorenz-like system [ J ]. Chaos, Solution and Fractals ,2006,28 (5) : 1196-1203. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部