摘要
利用二阶模糊随机过程均方Henstock-Stieltjes积分的定义和性质,讨论了两类二阶模糊随机过程均方Henstock-Stieltjes积分的收敛定理,即二阶模糊随机过程序列关于增实函数收敛定理(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))=integral from n=a to b(X(t)dg(t))和均方连续二阶模糊随机过程关于实值单调非减函数列收敛定理(ρ)lim n→∞ integral from n=a to b(X(t)dg(t))=integral from n=a to b(X(t)dg(t)).
In this paper,using definition and properties of mean-square Henstock-Stieltjes integrals for second order fuzzy stochastic process,two convergence theorems of Henstock-Stieltjes are discussed.The two following convergence theorems have been gotten.One is the convergence theorem of a second order fuzzy stochastic process sequence about increasing real function(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))= integral from n=a to b(X(t)dg(t)),the other is convergence theorem of mean-square continuous second order fuzzy stochastic process about a non-decreasing real function sequence(ρ)limn→∞ integral from n=a to b(X(t)dg(t))= integral from n=a to b(X(t)dg(t)).These results play important roles in further studying integrability and of differentiability of fuzzy stochastic process.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第5期62-66,共5页
Journal of Southwest China Normal University(Natural Science Edition)
基金
陕西省教育厅科研计划项目(11JK0506)