摘要
讨论了棋子颜色变化过程中序列{Ak}中点的类型及其分类条件,得到了同周期不同维数点的构造定理,然后给出当n=2l各类循环点的个数以及所有点的演化图,最后对n≠2l时,根据自然数n的质因数,对点集Sn进行分类,给出点的演化情况,以及了Sn中环数与周期关系.
The essay discussed the types and conditions of points in process Color-changing,figured out the structure theory of the same period and different dimension points and worked out the number and the evolution of all types cycle points on n=2l.Based on the prime factors of integer n,it gave out the evolution of all types cycle points,as well as the relations of the cycle's numbers and the period on integer n≠2l.
出处
《佳木斯大学学报(自然科学版)》
CAS
2011年第5期789-791,共3页
Journal of Jiamusi University:Natural Science Edition
基金
甘肃省教育厅科研项目(0710.01)
关键词
棋子颜色问题
布尔向量
周期
演化
color-changing problem of chess stones
Boolean vectors
the period
the evolution