期刊文献+

带参数的奇异三阶三点边值问题的正解

Positive Solutions to the Problem of Singular Third-order Three-point Boundary Value with a Parameter
下载PDF
导出
摘要 本文讨论下述带参数的奇异三阶三点边值问题■其中γ>0是参数且a(t)在t=0和t=1处具有奇性,当f和a满足适当条件时,对一定取值范围内的γ,获得了上述边值问题正解的存在性与不存在性.所用主要工具是Guo-Krasnoselskii不动点定理. The problem discussed in this paper is singular third-order three-point boundary value with a parameter. It is described as follows:{u″+λa(t)f(u(t))=0,t∈(0,1),u(0)-au′(0)=u′(P)=βu′(1)+λu″(1)=0,where a (t) will be si and the value of A is ngular when t=0 and t=1, and A (λ〉0)is a parameter. Whenfand a satisfy appropriate conditions, limited in certain range (e.g.λ〉0), we can determine the existence or non-existence of positive solutions to the above problem. The main way used in this paper is the Guo-Krasnoselskii fixed point theorem.
作者 曹珂
出处 《河西学院学报》 2011年第5期4-10,共7页 Journal of Hexi University
基金 国家自然科学基金(10801068)
关键词 边值问题 正解 奇异 存在性 不动点定理 Boundary value problem Positive solution Singular Existence Fixed point theorem
  • 相关文献

参考文献2

二级参考文献2

  • 1Yosida,K.Functional analysis, (4th Edition)[]..1978 被引量:1
  • 2Krasnosel’skii,M.A.Positive solutions of operator equations[]..1964 被引量:1

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部