期刊文献+

组合预测方法在需水预测中的应用 被引量:9

Combined forecasting method for forecasting water demand
原文传递
导出
摘要 社会经济和气候因素对水资源需求的影响一直是国内外重点关注的研究领域,以东莞市为研究对象,将需水量影响因子划分为气候因子、经济因子和社会因子,选取不同的影响因子建立需水预测模型,分析各类因子与需水量之间的响应关系.在此基础上选取最合适的影响因子,应用多种方法建立预测模型,采用最小方差组合预测技术对不同预测模型的结果进行集成.研究结果揭示了东莞市需水量变化的情景和成因,预测了东莞市需水量变化趋势,并为东莞市水资源需求预测管理提供理论基础. The influence of climatic and socioeconomic factors on water consumption has always been kept an important issue by global research institute.Taking Dongguan city as study object,the influence factors of water requirement are divided into climate factors,social factors and economical factors,and analyzing response relationship between various influence factors and water demand.A water demand forecasting model is established by selecting the most suitable influence factors and applying different water demand forecast methods;least squares combination forecasting technology is adopted to integrate the results of different forecasting models.Study proclaims that the circumstances and reasons of water demand changes of Dongguan city,reveals the variation tendency of water demand,and provides a theoretical foundation for Dongguan City water resources management.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2011年第5期565-570,共6页 Engineering Journal of Wuhan University
基金 国家自然科学基金重点项目(编号:50839005)
关键词 城市需水量 最小二乘组合预测 人工神经网络 支持向量机 urban water demand least squares combination forecasting artificial neural network support vector machines
  • 相关文献

参考文献12

  • 1Frederick K D. Climate change impacts on water re- sources and possible responses in the MINK region [J]. Climatic Change, 1993,24(1-2) :83. 被引量:1
  • 2Ruth M, Bernier C, Jollands N, et al. Adaptation of urban water supply infrastructure to impacts from cli- mate and socioeconomic changes: The case of Hami- lton, New Zealand [J]. Water Resources Manage-ment, 2007,21(6):1031-1045. 被引量:1
  • 3O'Hara J K, Georgakakos K P. Quantifying the urban water supply impacts of climate change[J]. Water Re- sources Management, 2008,22(10) : 1477-1497. 被引量:1
  • 4Adamowski J F. Peak daily water demand forecast modeling using artificial neural networks [J]. Journal of Water Resources Planning and Management, 2008, 134(2) : 119-128. 被引量:1
  • 5Firat M, Yurdusev M A, Turan M E. Evaluation of artificial neural network techniques for municipal wa- ter consumption modeling[J]. Water Resources Man- agement, 2009,23(4) :617-632. 被引量:1
  • 6Wang Y, Zhang J. Water demand prediction based on REF neural network[C]//Chongqing, China: Institu- te of Electrical and Electronics Engineers Inc. , 2008: 4514-4516. 被引量:1
  • 7Bardossy G, Halasz G, Winter J. Prognosis of urban water consumption using hybrid fuzzy algorithms[J]. Journal of Water Supply: Research and Technology- AQUA, 2009,58(3):203-211. 被引量:1
  • 8刘俊萍,畅明琦.基于支持向量机的需水预测研究[J].太原理工大学学报,2008,39(3):299-302. 被引量:15
  • 9Chen X. Prediction of urban water demand based on GA-SVM[C]//Wuhan, China: IEEE Computer Soci- ety, 2009:285-288. 被引量:1
  • 10Zhang Lingling, Wei Yanfu, Wang Zongzhi. Predic- tion on Ecological Water Demand Based on Support Vector Machine [ C ]//International Conference on Computer Science and Software Engineering, 2008: 1032-1035. 被引量:1

二级参考文献33

共引文献29

同被引文献126

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部