期刊文献+

植物下胚轴向光弯曲机制研究进展

Research Advances in Plant Hypocotyl Phototropism
原文传递
导出
摘要 植物向光弯曲生长主要是由于其向光和背光面生长素的不对称分布引起。近年来研究发现,在不同强度的蓝光单侧照射下,植物可能存在不同的向光弯曲调节机制。目前,关于向光素PHOT1介导弱蓝光引起的下胚轴弯曲研究较为详细,即PHOT1感受蓝光后,与其下游的信号蛋白NPH3、RPT2和PKS1相互作用,调控生长素运输蛋白的活性及定位,诱导生长素的不对称分布引起向光弯曲。PHOT1和PHOT2以功能冗余方式调节强蓝光引起的植物下胚轴向光弯曲,NPH3可能作为共享调节因子,引发不同的信号转导通路实现功能互补。此外,其他光受体、激素、蛋白激酶、蛋白磷酸酶以及Ca2+也参与了植物向光弯曲的调节。本文就近年来有关植物下胚轴向光弯曲信号组分及可能的网络关系进行总结,并对该研究领域存在的问题及今后可能的研究方向进行展望。 The bending of the seedling stem toward unilateral light is caused by asymmetrical auxin distribution between the shaded and illuminated sides of plant organs. In recent years, genetic analysis has shown that plant may have different mechanisms in response to different light intensities in phototropism. In weak blue light, blue light receptors phototropin1 (PHOT1) regulates phototropism by directly interacting with signaling proteins NPH3, RPT2 and PKS1, resulting in asymmetrical distribution of auxin. In strong blue light, PHOT1 and PHOT2 contribute redundantly to blue-light-induced phototropic curvature of hypocotyls. The NPH3 may act as a common factor in different signaling pathways to complement functions. In addition, other photoreceptors, such as hormones, protein phosphatase and Ca2+, are also involved in phototropic response. This paper summarized some signaling components and their possible relationship in phototropism, and the problems remained are discussed, finally the possible research directions in this field are proposed.
出处 《植物生理学报》 CAS CSCD 北大核心 2011年第9期855-860,共6页 Plant Physiology Journal
基金 国家自然科学基金(30871300) 河南省教育厅自然科学基金项目(2011B180007)
关键词 向光素 向光弯曲 信号转导 phototropin phototropism signal transduction
  • 相关文献

参考文献1

二级参考文献64

  • 1Ascenzi, R., and Gantt, J.S. (1999). Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol. Biol. 41, 159-169. 被引量:1
  • 2Batschauer, A. (2005). Plant cryptochromes: their genes, biochemistry, and physiological roles. In Handbook of Photosensory Receptors, W.R. Briggs and J.L. Spudich, eds (Weinheim: Wiley-VCH), pp. 2112-2146. 被引量:1
  • 3Benjamins, R., Quint, A., Weijers, D., Hooykaas, R, and Offringa, R. (2001). The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057-4067. 被引量:1
  • 4Bogre, L., Okresz, L., Henriques, R., and Anthony, R.G. (2003). Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 8, 424-431. 被引量:1
  • 5Briggs, W.R. (2006). Flavin-based photoreceptors in plants. In Flavins: Photochemistry and Photobiology, Silvia, E., and Edwards, A.M., eds (Cambridge: RCS Publishing), pp. 183-216. 被引量:1
  • 6Briggs, W.R., et al. (2001). The phototropin family of photoreceptors. Plant Cell 13, 993-997. 被引量:1
  • 7Cho, H.Y., Tseng, T.S., Kaiserli, E., Sullivan, S., Christie, J.M., and Briggs, W.R. (2007). Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol 143, 517-529. 被引量:1
  • 8Christensen, S.K., Dagenais, N., Chory, J., and Weigel, D. (2000). Regulation of auxin response by the protein kinase PINOID. Cell 100, 469-478. 被引量:1
  • 9Christie, J.M. (2007). Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45. 被引量:1
  • 10Christie, J.M., Swartz, T.E., BogomolniR.A., and Briggs, W.R. (2002). Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32, 205-219. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部