期刊文献+

Parallel Bulk-Loading of Spatial Data with MapReduce:An R-tree Case 被引量:4

Parallel Bulk-Loading of Spatial Data with MapReduce:An R-tree Case
原文传递
导出
摘要 Current literature on parallel bulk-loading of R-tree index has the disadvantage that the quality of produced spatial index decrease considerably as the parallelism increases. To solve this problem, a novel method of bulk-loading spatial data using the popular MapReduce framework is proposed. MapReduce combines Hilbert curve and random sampling method to parallel partition and sort spatial data, thus it balances the number of spatial data in each partition. Then the bottom-up method is introduced to simplify and accelerate the sub-index construction in each parti- tion. Three area metrics are used to test the quality of generated index under different partitions. The extensive experiments show that the generated R-trees have the similar quality with the gener- ated R-tree using sequential bulk-loading method, while the execution time is reduced considerably by exploiting parallelism. Current literature on parallel bulk-loading of R-tree index has the disadvantage that the quality of produced spatial index decrease considerably as the parallelism increases. To solve this problem, a novel method of bulk-loading spatial data using the popular MapReduce framework is proposed. MapReduce combines Hilbert curve and random sampling method to parallel partition and sort spatial data, thus it balances the number of spatial data in each partition. Then the bottom-up method is introduced to simplify and accelerate the sub-index construction in each parti- tion. Three area metrics are used to test the quality of generated index under different partitions. The extensive experiments show that the generated R-trees have the similar quality with the gener- ated R-tree using sequential bulk-loading method, while the execution time is reduced considerably by exploiting parallelism.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2011年第6期513-519,共7页 武汉大学学报(自然科学英文版)
基金 Supported by the National High Technology Research and Development Program of China (863 Program) (2011AA12A306) the National Natural Science Foundation of China (40801160,60902036)
关键词 parallel bulk-loading MAPREDUCE R-TREE QUERYPROCESSING parallel bulk-loading MapReduce R-tree queryprocessing
  • 相关文献

参考文献16

  • 1Apostolos P, Yannis M. Parallel bulk loading of spatial data [J]. Parallel Computing, 2003, 29: 1419-1444. 被引量:1
  • 2Roussopoulos N, Leiiker D. Direct spatial search on pictorial databases using packed R-trees [C]//Proceedings of 1985 ACM SIGMOD Conference. Austin: ACM Press, 1985:17- 31. 被引量:1
  • 3Kamel I, Faloutsos C. On packing R-trees [C]//Proceedings of the 2nd CIKM Conference. Washington: ACM press, 1993: 490-499. 被引量:1
  • 4Leutenegger S T, Lopez M A, Edgington J. STR: A simple and efficient algorithm for R-tree packing [C]//Proceedings of the 13th IEEE ICDE Conference. Birmingham: IEEE Computer Society Press, 1997: 497-506. 被引量:1
  • 5Leutenegger S T, Nicol D M. Efficient bulk-loading of grid files [J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 9: 410-420. 被引量:1
  • 6Ciaccia P, Patella M. Bulk-loading the M-tree [C]//Proceedings of the 9th Australian Database Conference. Perth: Springer-Verlag, 1998: 15-26. 被引量:1
  • 7van den Bercken J, Seeger B. A generic approach to bulk loading multidimensional index structures [C]//Proceedings of the 23rd VLDB Conference. Athens: Springer-Verlag, 1997 406-415. 被引量:1
  • 8Arge L, Hinrichs K H. Efficient bulk operations on dynamic R-trees [J]. Algorithmiea, 2002, 1: 104-128. 被引量:1
  • 9Berchtold S, Bohm C. Improving the query performance of high-dimensional index structures by bulk load operations [C]//Proceedings of the 6th EDBT. Valencia: Springer-Verlag, 1998: 216-230. 被引量:1
  • 10van den Bercken J, Seeger B. An evaluation of generic bulk-loading techniques [C]//Proceedings of the 27th VLDB Conference. Rome: Springer-Verlag, 2001: 461-470. 被引量:1

同被引文献41

  • 1Madduri K, Bader D A, Berry J W, et al. Parallel shor-test path algorithms for solving large — scale instances[C ]. 9th DIMACS Implementation Challenge-TheShortest Path Problem, New Jersey, USA : Rutgers Uni-versity ,2006 : 1 —39. 被引量:1
  • 2Waugh T C, Hopkins S. An algorithm for polygon overlayusing cooperative parallel processing [ J ]. InternationalJournal of Geographical Information Science, 1992,6(6) : 457 -467. 被引量:1
  • 3Dean J, Ghemawat S. MapReduce: simplified data pro-cessing on large clusters [ J ], Communications of theACM, 2008, 51(1) : 1Q7-113. 被引量:1
  • 4Eldawy A,Li Y, Mokbel M F,et al. CG_Hadoop: com-putational geometry in MapReduce [ C ]. Proceedings ofthe 21st ACM SIGSPATIAL International Conference onAdvances in Geographic Information Systems, Orlando,FL, USA:ACM,2013: 294 -303. 被引量:1
  • 5Eldawy A, Mokbel M F. SpatialHadoop: A MapReduceFramework for Spatial Data[ C]. IEEE International Con-ference on Data Engineering, ICDE 2015, Seoul, SouthKorea:IEEE, 2015. 被引量:1
  • 6Aji A,Wang F, Vo H, et al. Hadoop gis: a high per-formance spatial data warehousing system over mapreduce[C]. Proceedings of the VLDB Endowment, Trento, Ita-ly :Very Large Database Endowment, 2013 : 1 009 —1 020. 被引量:1
  • 7Mokbel M F, Alarabi L, Bao J, et al. MNTG: an extensi-ble web ~ based traffic generator[ M]. Springer, 2013. 被引量:1
  • 8Alarabi L, Eldawy A,Alghamdi R, et al. TAREEG: aMapReduce — based web service for extracting spatial datafrom OpenStreetMap [ C ]. Proceedings of the 2014 ACMSIGMOD international conference on Management of data,New York,NY,USA : ACM,897 - 900. 被引量:1
  • 9Eldawy A, Mokbel M F,Alharthi S, et al. SHAHED: AMapReduce - based System for Querying and VisualizingSpatio - temporal Satellite Data[ C] ? International Confer-ence on Data Engineering, ICDE 2015,Seoul, South Ko-rea :IEEE ,2015. 被引量:1
  • 10Cary A, Sun Z, Hristidis V,et al. Experiences on pro-cessing spatial data with mapreduce [ C ]. Scientific andStatistical Database Management, New Orleans, LA,USA:Springer ,2009 : 302 -319. 被引量:1

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部