期刊文献+

一种基于CBR的个性化推荐算法 被引量:3

Personalized Recommendation Algorithm Based on CBR
下载PDF
导出
摘要 随着搜索引擎的快速发展,个性化搜索、社会化搜索已经成为搜索引擎发展的主要发展方向。本文针对用户搜索经验的再利用问题,探索个性化搜索算法。在简要介绍前期工作基础上,重点讨论了用户建模技术、检索案例以及案例排名等问题,提出了一种基于CBR的个性化推荐算法,并在ExpertRec推荐系统进行实验,结果表明,该算法推荐效果良好。 The limited personalized services in current mainstream search engines often make users re-browse some web pages and even fail to find what they need.In this paper,a personalized recommendation algorithm based on CBR for reusing users' search experiences is proposed.Through discussing the modeling user profile,searching and ranking cases in detail,a personalized recommendation algorithm based on CBR(case-based reasoning) is proposed based on users' search experience.The proposed algorithm is applied in the web search recommendation system ExpertRec and good result are obtained.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期151-156,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60873139) 山西省青年科技研究基金资助项目(200821024)
关键词 个性化搜索 推荐算法 案例推理 推荐系统 personalized web search recommendation algorithm case-based reasoning recommender system
  • 相关文献

参考文献10

  • 1YANBE Y,JATOWT A,NAKAMURA S,et al. Can social bookmarking enhance search in the Web7 [C]//Proeeedings of Joint Conference on Digital Libraries. New York :IEEE Press, 2007:107-116. 被引量:1
  • 2BAO Shen-hua,XUE Gui-rong,WU Xiao-yuan,et al. Optimizing web search using social annotations[C]//Proceedings of the 16th International World Wide Web Conference (WWW2007). New York:IEEE Press,2007:501-510. 被引量:1
  • 3NOLL M G,MEINEL C. Web search personalization via social bookmarking and tagging[C]//Proceedings of the 6th International Semantic Web Conference. Berlin : Springer Verlag, 2007,4825 : 367-380. 被引量:1
  • 4BENDER M,CRECELIUS T,KACIMI M, et al. Exploiting social relations for query expansion and result ranking [C]//Proeeedings of International Conference on Data Engineering (ICDE) Workshops. New York:IEEE Press, 2008:501-506. 被引量:1
  • 5XU Sheng-qiang,BAO Shen-hua,FEI Ben,et al. Exploring folksonomy for personalized search[C]//Proceedings of the 31st Annual International ACM SIGIR Conference (SIGIR 2008). New York :IEEE Press,2008:155-162. 被引量:1
  • 6HEYMANN P,KOUTRIKA G ,GARCIA-MOLINA H. Can social bookmarking improve Web search? [C]//Proceedings of the First ACM Internation Conference on Web Search and Data Mining (WSDM 2008). New York:IEEE Press, 2008 : 195-206. 被引量:1
  • 7李鲜花,孙静宇,陈俊杰.搜索引擎-浏览器插件-推荐引擎模式研究[J].广西师范大学学报(自然科学版),2010,28(1):109-112. 被引量:1
  • 8潘建国.基于语义的用户建模技术与应用研究[D].上海:上海大学计算机工程与科学学院,2008. 被引量:3
  • 9JONES K S. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of Documentation, 1972,28: 11-21. 被引量:1
  • 10DOU Zhi-cheng,SONG Rui-hua,WEN Ji-rong. A large-scale evaluation and analysis of personalized search [C]// Proceedings of the 16th International World Wide Web Conference (WWW 2007). New York:IEEE Press, 2007: 581-590. 被引量:1

二级参考文献3

共引文献2

同被引文献50

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部