期刊文献+

一种基于等价描述矩阵的规则提取方法

Rules Extraction Method Based on Equivalence Describe Matrix
下载PDF
导出
摘要 粗糙集方法是一种有效的处理分类问题的方法,但是它在面对高维数据时,很难依靠属性约简提取出泛化能力较高的规则。这是由于粗糙集约简本身在一定程度上忽略了对象个体对信息系统的影响。为避免此问题,通过描述各个对象与其补集间的差别,提取了各个对象所包含的分类信息。在此基础上,设计了一种新的基于粗糙集的规则提取算法。通过实验分析,验证了本算法比传统算法具有更好的泛化能力。 Rough set method is an effective method of classification,but with high-dimensional data,it is difficult to rely on reduction to extract the rules which have high generalization capability,because the reduction of rough set itself fails to notice the effect of the object on the information system to a certain degree.This paper describes the differences between different objects and extracts the classified information of every object.Then a new rules extraction method is designed based on rough set.And the algorithm is proved to have better generalization capability than the traditional one.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期94-100,共7页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(71031006 60970014)
关键词 粗糙集 属性约简 决策表 等价类 等价描述矩阵 rough set attribute reduction decision datasets equivalence class equivalence describe matrix
  • 相关文献

参考文献13

  • 1PAWLAK Z. Rough set [J]. International Journal of Computer and Information Science, 1982,11 (5) : 341-356. 被引量:1
  • 2PAWLAK Z. Rough sets theoretical aspects of reasoning about data [M]. Boston,Mass:Kluwer Academic Publisher, 1991. 被引量:1
  • 3张文修等编著..粗糙集理论与方法[M].北京:科学出版社,2001:224.
  • 4PAWLAK Z ,SKOWRON A. Rudiments of rough sets [J]. Information Science, 2007,117 (1) : 3-27. 被引量:1
  • 5QIAN Y H,LIANG J Y. Positive approximation:an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence ,2010,174(9/10) :597-618. 被引量:1
  • 6THANGAVEL K,PETHALAKSHMI A. Dimensionality reduction based on rough set theory:a review[J]. Applied Soft Computing, 2009,9 (1): 1-12. 被引量:1
  • 7YAO Y Y,ZHAO Y. Discernibility matrix simplification for constructing attribute reducts[J]. Information Sciences, 2009,179(7): 867-882. 被引量:1
  • 8LI J,WANG X,FAN X W. Improved binary discernibility matrix attribute reduction algorithm in customer relation- ship management [J]. Procedia Engineering, 2010,7 : 473-476. 被引量:1
  • 9HU Xiao-hua,CERCONE N. Learning in relational databases:a rough set approach[J]. Computational Intelligence. 1995,11(2):323-337. 被引量:1
  • 10QIAN Y H,LIANG J Y,LI D Y. Measures for evaluating the decision performanceof a decision table in rough set theory[J]. Information Sciences, 2008,178(1/2) : 181-202. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部