期刊文献+

一种自适应混合多目标粒子群优化算法 被引量:10

A More Useful AHMOPSO(Adaptive Hybrid Multi-Objective Particle Swarm Optimization) Algorithm
下载PDF
导出
摘要 文章针对多目标粒子群优化算法多样性损失和收敛性不好的问题,提出了一种自适应混合多目标粒子群优化算法。首先,使用Sobol序列映射决策变量初始值,使得初始解集在全决策空间范围有更均匀的分布。使用线性递减权重法调整粒子群算法的权重,增强算法收敛性。提出了使用基于多样性指标SP的自适应变异算子增加种群多样性的同时,还提出了在最优档案集中,使用基于改进的世代距离指标GD的自适应混沌搜索增强算法局部搜索能力。最后,将文中提出的改进算法与MOPSO(基本多目标粒子群优化算法)和NSGA2对比,结果显示出该算法能够在保持优化解收敛性的同时获得更好的多样性。 Aim. The introduction of the full paper reviews a number of papers in the open literature and then proposes AHMOPSO algorithm, which we believe is better and is explained in sections 1, 2 and 3. Section 1 briefs past research. The core of section 2 consists of: "Firstly, the initial solution sets are mapped by the Sobol sequence to distribute the decision variables uniformly. And the linear descending weight is utilized to enhance the convergence of the algorithm. The adaptive mutating operator based on the diversity index SP is brought to add the variety of the chromosomes. In addition, the adaptive chaos searching operator based on the improved generation distance index GD is adopted to enhance the local search ability. "Simulation results, presented in Tables 1 through 3 and Figs. 2 through 5, compare our AHMOPSO algorithm with three generally used algorithms; the comparison shows preliminarily that AHMOPSO can indeed obtain better convergence and diversity.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第5期695-701,共7页 Journal of Northwestern Polytechnical University
基金 航空科学基金(20090753008)资助
关键词 多目标粒子群优化 Sobol序列 自适应 变异算子 混沌搜索 optimization, algorithms, simulation, convergence of numerical methods, Sobol sequence mutation operator chaos search
  • 相关文献

参考文献12

  • 1雷德明,严新平著..多目标智能优化算法及其应用[M].北京:科学出版社,2009:389.
  • 2Coello C A, Veldhuizen D A, Lamont G B. Evolutionary Algorithms for Solving Multi-Objective Problems. New York:Kluwer Academic Publishers, 2002. 被引量:1
  • 3Coello C A, Veldhuizen D A, Lamont G B. Evolutionary Algorithms for Solving Multi-Objective Problems. 2nd ed. New York: Springer-Verlag, 2007. 被引量:1
  • 4Deb Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithm. Chichester: John Wiley & Sons, 2001. 被引量:1
  • 5崔逊学著..多目标进化算法及其应用[M].北京:国防工业出版社,2006:331.
  • 6Coello C A, Pulido G T, Lechuga M S. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Trans on Evolu-tionary Computation, 2004, 8 ( 3 ) : 256 - 279. 被引量:1
  • 7Alvarez-Bentiez J E, Everson R M, FieldsendJ. A MOPSO Algorithm Based Exclusively on Pareto Dominance Concept. Berlin: Springer, 2005:459 -475. 被引量:1
  • 8Coello C A, MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. Proceedings of the Evolutionary,2002. 被引量:1
  • 9Andries P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley, 2006. 被引量:1
  • 10赖斯,卢秀玉.蒙特卡罗方法与拟蒙特卡罗方法解线性方程组[J].东华大学学报(自然科学版),2010,36(2):224-228. 被引量:4

二级参考文献21

  • 1Schaffer J D.Some experiments in machine learning using vector evaluated genetic algorithms[D].Vanderbih University,1984. 被引量:1
  • 2Spears W M.Crossover or mutation?[C]//Whitley L D.Foundations of Genetic Algorithms,Morgan Kaufmann,1993:221-237. 被引量:1
  • 3Falco I D,Coippa A D,Tarantino E.Mutation-based genetic algorithm:Performance evaluation[J].Applied Soft Computing,2002,1 (4):285-299. 被引量:1
  • 4Dai Xiao-ming,Zou Run-min,Sun Rong,et al.Convergence properties of non-crossover genetic algorithm[C]//Proceedings of the 4th World Congress on Intelligent Control and Automation,Shanghai,China,2002. 被引量:1
  • 5Eiben A E,Schoenauner M.Eolutionary computing[J].Irdormation Processing Letters,2002,82:1-6. 被引量:1
  • 6Michalewicz Z.Genetic algortithms+data structure=programs[M].Berlin:Springer-Verlag,1992. 被引量:1
  • 7Michalewicz Z,Fogel D B.How to solve it:Modern heuristics[M].Berlin:Springer-Verlag,2000. 被引量:1
  • 8Yao X,Liu Y.Fast evolution strategies[C]//Angeline P J,Reynolds R,McDonnell J,et al.Proc 4th IEEE Conf in Evolutionary Programming Ⅵ.Berlin,Germany:Springor-Verlag,1997. 被引量:1
  • 9Deb K,Goyal M.A combined genetic adaptive search(GeneAS) for engineering design[J].Computer Science and Informatics,1996,26(4):30-45. 被引量:1
  • 10Kalyanmoy D.Multi-ohjective genetic algorithms:Problem difficulties and construction of test problems[J].Evolufionary Computation,1999,7(3):351-357. 被引量:1

共引文献18

同被引文献131

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部