期刊文献+

黎曼流形上薛定谔方程的Harnack估计

The Harnack Estimate of the Schrodinger Equation on Riemannian Manifold
原文传递
导出
摘要 推导了薛定谔方程正解的一种新的整体梯度估计和Harnack不等式,推广了一些有关热方程的结论,并且得到了一个关于薛定谔算子的刘维尔定理. The author establishes a whole Gradient estiamte and Harnack inequalitiesof the SchrSdinger equation. We extends some conclusions of the heat equation. Moreover, as application, We conclude a Liouville theorem about the SchrSdinger operator.
作者 王建红
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第6期993-1008,共16页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10871069)
关键词 薛定谔方程 梯度估计 HARNACK不等式 Schrodinger equation gradient estimate Harnack inequality
  • 相关文献

参考文献11

  • 1Cheng S. Y., Yau S. T., Differential equations on Riemannian manifold and their applications, Comm. Pure Appl. Math., 1975, 28(3): 333-354. 被引量:1
  • 2Li P., Yau S. T., On the parabolic kernel of the Schrodinger operator, Acta Math., 1986, 156(1): 153-201. 被引量:1
  • 3Davies E. B., Heat kernels and Spectral Theory, Cambridge Tracts in Math., Cambridge: Camb. Univ. Press, 1990, 92. 被引量:1
  • 4Hamilton R. S., A matrix Harnack estimate for the heat equation, Comm. Anal. Geom., 1993, 1: ]13-126. 被引量:1
  • 5Souplet P., Zhang Q. S., Sharp Gradient estimate and Yau's Liouville theroem for the heat equation on noncompact manifolds, Bull. London Math. Soc., 2006, 38(6): 1045-1053. 被引量:1
  • 6Li X. D., Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl., 2005, 84(10): 1295-1361. 被引量:1
  • 7Ma L., Gradient estimates for a simple elliptic equation on noncompact Riemannian manifolds, J. Funct. Anal., 2006, 241(1): 374-382. 被引量:1
  • 8Li J. Y., Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifold, Journal of Functional Analysis, 1991, 100(2): 233-256. 被引量:1
  • 9Bakry D., Qian Z. M., Harnack inequalities on a manifold with positive or negative Ricci curvature, Revista Matematica Iberoamericana, 1999, 15(1): 143-179. 被引量:1
  • 10Yau S. T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 1975, 28(3): 201-228. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部