期刊文献+

电动汽车动力电池荷电状态的滑模估计方法 被引量:6

State-of-charge estimation method for electric vehicle battery using sliding mode observer
下载PDF
导出
摘要 应用滑模观测器方法进行了荷电状态估计的研究.基于改进的Thevenin等效电路模型建立了电池的状态空间模型,设计了一种能改善抖动问题的滑模状态观测器.为分析观测器的稳定性,对模型中的非线性项进行了分析,根据其导数有界的特性,利用拉格朗日中值定理给出了保证观测器收敛的条件,并由此确定观测器的设计参数.并且在Matlab环境下对该方法进行了仿真,与扩展卡尔曼滤波方法进行了比较,结果表明在电池的建模误差相同的情况下该方法具有更高的估计精度.所以,用滑模观测器进行荷电状态的估计可以有效地减小由模型误差引入的荷电状态估计误差. A method to estimate SOC (state of charge) using sliding mode observer is studied. First, a modified Thevenin model was used to establish the state space model of a battery. Then a sliding mode observer was designed. In order to analyze the stability of the observer, the nonlinear feature of the battery model was analyzed, which is used along with the theorem of Lagrange's mean to design a stable observer. Finally, a simulation experiment was carried out using Matlab. The result shows that this method has better predicting performance comparing to the extended Kalman filter method when there exists the same modeling errors. The uncertainty and model errors caused by the simple model are compensated by the sliding mode observer.
作者 夏晴 刘志远
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第B09期97-101,共5页 Journal of Southeast University:Natural Science Edition
关键词 电动汽车 电池荷电状态 滑模观测器 electric vehicle state of charge sliding mode observer
  • 相关文献

参考文献8

  • 1Piller S, Jassen M. Methods for state of charge determi- nation and their applications [ J ]. Journal of Power Sources. 2001 . 96( 1 ) :113 - 120. 被引量:1
  • 2Plett G. Extended Kalman filtering for battery manage-ment systems of LiPB-based HEV battery packs [ J ]. Jour- nal of Power Sources, 2004,134( 2 ) :252- 292. 被引量:1
  • 3Shi Pu, Zhao Yiwen. Application of unscented Kalman filter in the SOC estimation of Li-ion battery for autono- mous mobile robot [ C]//IEEE International Conference on Information Acquisition. Weihai, China, 2006:1279 - 1283. 被引量:1
  • 4王军平,曹秉刚,陈全世.基于自适应滤波的电动汽车动力电池荷电状态估计方法[J].机械工程学报,2008,44(5):76-79. 被引量:14
  • 5陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5. 被引量:85
  • 6Chen Min, Gabrel A. Accurate electrical battery model capable of predicting runtime and I-V performance [ J ]. IEEE Transactions on Energy Conversion, 2006,21 ( 2 ) : 504 - 511. 被引量:1
  • 7Kim II-S. The novel state of charge estimation method for Lithium battery using sliding mode observer [ Jl. Journal of Power Sources, 2006,163 ( 1 ) : 58d - 590. 被引量:1
  • 8Wacot B L, Zak S H. State observation of nonlineal un- certain dynamical systems [ J ]. IEEE Transactions on Au- tomatic Control, 1987, 32(2) : 165 - 170. 被引量:1

二级参考文献22

共引文献97

同被引文献60

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:200
  • 2Anbuky, A.H., P.E. Pascoe and P.M. Hunter. Knowledge based VRLA battery monitoring and health assessment, in Telecom- munications Energy Conference, 2000. INTELEC. Twenty-second International 2000. 被引量:1
  • 3Zhihang, C., et al. Battery state of charge estimation based on a combined model of Extended Kalman Filter and neural net- works, in Neural Networks (UCNN), The 2011 International Joint Conference on 2011. 被引量:1
  • 4赵洋.混合型水系超级电容器建模与参数辨识研究[D].上海:同济大学,2012. 被引量:3
  • 5郝国亮.超级电容器荷电状态计算方法的研究[D].北京:华北电力大学,2012. 被引量:1
  • 6KIM I S.A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J].IEEE Transactions on Power Electronics,2010,25 (4):1013-1022. 被引量:1
  • 7BHANGN B S,BENTLEY P,STONE D A,et al.Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybridelectric vehicles[J].IEEE Transactions on Vehicular Technology,2005,54(3):783-794. 被引量:1
  • 8Zhou Yongqin,Zhang Yanming,Zhao Pengshu. Study of battery state-of-charge estimation for hybrid electric vehicles[A].Hei Longjiang,2011.287-290. 被引量:1
  • 9Xiaosong Hu,Fengchun Sun,Yuan Zou. Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer[J].Energies,2010,(03):1586-1603. 被引量:1
  • 10S.M.Lukic,J.Cao,R.C.Bansal. Energy storage systems for automotive applications[J].{H}IEEE Transactions on Industrial Electronics,2008,(06):2258-2267.doi:10.1109/TIE.2008.918390. 被引量:1

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部