期刊文献+

基于小波特征分析的手指动作识别研究 被引量:1

Finger Gesture Recognition Based on Wavelet Features Analysis
原文传递
导出
摘要 目的:本文利用表面肌电(sEMG)信号来研究多种手指组合动作的识别问题。方法:在对采集的四个通道sEMG信号进行降噪预处理的基础上,采用移动加窗处理方法来提取关于手指运动状态的信号活动段,再分析各个信号活动段的小波系数统计特征,进而利用多类支持向量机(SVM)分类算法来实现手指组合动作的识别。结果:动作识别率最高达到100%。结论:所采用方法能够有效地识别多种手势动作,并为后续基于肌电信号的实时人机接口系统的研究奠定了理论基础。 Objective: The recognition problem of finger gestures using the multi-channel sEMG signals was explored in this paper. Methods: Based on the pre-processing of the collected four-channel sEMG signals, the moving-window method was utilized to extract the activities of fingers actions from the sEMG signals. Then, the statistical features of wavelet parameters were analyzed, and the SVM was used for the recognition of all the finger gestures. Results: The highest recognition rate can be reached up to 100%. Conclusion: The experimental results showed that the method we used could recognize multiple gestures effectively,and this preparatory work could be applied for the study of human-machine interface in our future work.
作者 李博 李强
出处 《现代生物医学进展》 CAS 2011年第20期3942-3945,共4页 Progress in Modern Biomedicine
基金 西南科技大学博士研究基金资助项目(08zx0110)
关键词 肌电信号 小波包 活动段提取 支持向量机 Surface EMG signal Wavelet Packet activity extraction Support Vector Machine
  • 相关文献

参考文献17

  • 1Mahdi Khezri, Mehran Jahed. An exploratory study to design a novel hand movement identification system [J]. Computers in Biology and Medicine 39 (2009):433-442. 被引量:1
  • 2Chen Xiang, Li Qiang, Yang Ji-Hai, Vuokko Lantz, Wang Kong-Qiao. Test-retest repeatability of Surface Electromyography Measurement for Hand Gesture [J].The 2nd International Conference on Bioinfo- rmatics and Biomedical Engingeering, 2008:1923-1926. 被引量:1
  • 3Narender P. Reddy, Vineet Gupta. Toward direct bioeontrol using surface EMG signals: Control of finger and wirst joint models [J]. Medical Engineering & Physics, 2007:398-403. 被引量:1
  • 4罗志增,王人成.基于表面肌电信号的前臂手部多运动模式识别[J].仪器仪表学报,2006,27(9):996-999. 被引量:18
  • 5李醒飞,朱嘉,杨晶晶,张国雄,卢志扬.基于肌电信号的人手运动状态的辨识[J].中国生物医学工程学报,2007,26(2):166-169. 被引量:7
  • 6颜志国..基于粗糙集和支持向量机的表面肌电特征约简和分类研究[D].上海交通大学,2008:
  • 7Jun-Uk Chu, Inhyuk Moon, Mu-Seong Mun. A Real-Time EMG Pattern Recognition System Based on Linear-Nonlinear Feature Proj- ection for a Multifunction Myoelectric Hand [J]. IEEE Transactions on Biomedical Engineering, 2006:2232-2239. 被引量:1
  • 8Rami N. Khushaba, Adel Al-Jumaily. Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control [J]. International Journal of Biomedical Sciences, 2007 : 1306-1216. 被引量:1
  • 9鞠徐,宋晓峰.引入关联维的表面肌电信号的特征提取[J].生物医学工程研究,2008,27(3):184-187. 被引量:1
  • 10Mahdi Khezri, Mehran Jahed. Real-time intelligent pattern recogn- ition algorithm for surface EMG signals [J]. BioMedical Engineering OnLine, 2007, 6:45. 被引量:1

二级参考文献46

共引文献44

同被引文献11

  • 1Coatrieux JL.On-line electromyographic signal processing system[J].IEEE Trans Biomed Eng,1984(2):199-207. 被引量:1
  • 2Wang RC.Discussion on various methods of EMG processing for the control of prostheses[C].Proc Int Conf Biomed Eng,1996:341-344. 被引量:1
  • 3Giuffrida J P,Crago PE.Synergistic EMG control of FES elbow extension after spinal cord injury[C].IEEE EMBS,2003,2:1515-1518. 被引量:1
  • 4黄松恩}二肢肌电信号分析与脑卒中康复训练系统[D].上海大学,2013. 被引量:1
  • 5Anam K,Khushaba RN,A1-Jumaily A.Two-channel surface electromyography for individual and combined finger movements[C].IEEE EMBC,2013:4961-4964. 被引量:1
  • 6Lin L,Jianhui W,Liang D.An improved method for sEMG segmentation[C].IEEE CCDC,2012:1308-1311. 被引量:1
  • 7Englehart K,Hudgins B,Parker PA.Classification of the myoelectric signal using time-frequency based representations[J].Med Eng Phys,1999,21(6):431-438. 被引量:1
  • 8Graupe D,Cline WK.Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes[J].IEEE Trans Systems Man Cybernetics,1975(2):252-259. 被引量:1
  • 9邱青菊,朱向阳.基于双谱分析表面肌电信号特征的提取与模式识别[J].中国组织工程研究与临床康复,2010,14(4):645-648. 被引量:9
  • 10雷敏,王志中.一种用于实时提取动作信号的新方法[J].中国医疗器械杂志,2000,24(4):200-202. 被引量:17

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部