摘要
目的比较大、小直径钛网植骨对颈椎椎体次全切除减压终板-钛网界面应力分布的影响。方法利用Ansys 9.0软件的建模功能,建立大、小直径钛网植骨钢板固定手术模型。分别对模型施加80 N预载荷及1.8 Nm力矩,使其产生轴向压缩、前屈和后伸运动,选取终板-钛网界面7个接触点,提取各个点的von Mises应力,然后进行比较。结果在各种工况下,大直径钛网植骨C4下终板-钛网界面(七个点的平均值分别为6.71、7.19、9.04 Mpa)和C6上终板-钛网界面各个接触点的应力(七个点的平均值分别为7.61、8.23、9.97 Mpa)分别小于小直径钛网植骨C4下终板-钛网界面(七个点的平均值分别为9.05、9.81、12.06 Mpa)和C6上终板-钛网界面相应接触点的应力(七个点平均值分别为10.65、11.59、14.26 Mpa)。结论大直径钛网植骨能够降低终板-钛网界面的应力,避免终板应力的过度集中,从而降低钛网下沉的发生率,但应用于临床有待于进一步研究。
Objective To study the mechanical changes on cage-endplate interface between different size of the titanium mesh cages with larger or small diameter after anterior cervical corpectomy by finite element analysis.Methods Based on the intact finite element model(FE/Intact),two models were generated by simulating anterior cervical titanium mesh fusion and plate after C5 corpectomy according to the applied titanium mesh cage conditions: Φ12 mm titanium mesh cage without internal end ring(L-),Φ10 mm titanium mesh cage without internal end ring(S-),von Mises stress of seven parts on the superior and inferior cage-endplate interface was comparatively analyzed between model with L-and model with S-after loading of each model being simulated using multidirectional moment loads of 1.8 Nm combined with a compressive preload of 80 N in compression,flexion and extension.Results The stress on the superior(mean stress:6.71、7.19、9.04)Mpa and inferior cage-endplate interface(mean stress:7.61、8.23、9.97)Mpa in the model with L-was smaller than that(mean stress:7.61、8.23、9.97,and 10.65、11.59、14.26)Mpa in the model with S-under the three loading conditions.Conclusions A titanium mesh cage with larger diameter produces a significant decrease of the cage-endplate interface stress and lower incidence of titamium mesh cage subsidence after anterior cervical corpectomy.But it would be proved further if it were used in clinical practice.
出处
《颈腰痛杂志》
2011年第5期323-327,共5页
The Journal of Cervicodynia and Lumbodynia
基金
泉州市科技优秀人才专项经费资助项目(编号:07A20)
泉州市局资助项目(编号:2006Z29)
关键词
颈椎
椎体次全切除
终板
钛网
下沉
生物力学
有限元法
cervical spine
corpectomy
endplate
titanium mesh cage
subsidence
biomechanics
finite elememt analysis