期刊文献+

具有调和势和耗散非线性项的薛定谔方程局部解

Local Existence for Schr?dinger Equations with the Harmonic Potential and Damped Nonlinearity
下载PDF
导出
摘要 利用调和分析方法讨论具有调和势和耗散非线性项的薛定谔方程柯西问题局部解的存在性,并发现局部解与耗散项系数的大小有关. Existence of local solutions for. Schrodinger equations with the harmonic potential and damped nonlinearity is obtained which depend on the size of the damping coefficient by the harmonic analysis method.
作者 丁凌 周良金
出处 《襄樊学院学报》 2011年第8期5-8,共4页 Journal of Xiangfan University
基金 国家自然科学基金(11101347) 湖北省教育厅科学技术研究计划重点项目(D20112605) 襄樊学院一般项目(2010YA022)
关键词 调和势 薛定谔方程 耗散非线性项 局部解 Harmonic potential Schrodinger equations Damped nonlinearity Local solutions
  • 相关文献

参考文献10

  • 1FIBICH G.Self-focusing in the damped nonlinear Schr0dinger equation[J]. SlAM J. Appl. Math., 2001 (61): 1680-1705. 被引量:1
  • 2GOLDMAN M V, RYPDAL K, HAFIZI B. Dimensionality and dissipation in Langmuir collapse[J]. Phys. Fluids, 1980(23): 945-955. 被引量:1
  • 3TSUTSUMI M. Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schr6dinger equations[J]. SIAM J. Math. Anal., 1984 (15): 357-366. 被引量:1
  • 4TSUTSUMI M, On global solutions to the initial-boundary value problem for the damped nonlinear Schrtidinger equations[J]. J. Math. Anal. Appl., 1990 (145): 328-341,. 被引量:1
  • 5KATO T. On nonlinear Schrodinger equations [J]. Ann. Inst. H. Poincare Phys. Theor., 1987(46): 113-129. 被引量:1
  • 6CAZENAVE T. Semilinear SchrSdinger Equations[M]. New York: Courant Institute of Mathematical Sciences, 2003. 被引量:1
  • 7SULEM C, SULEM P L. "The nonlinear SchrSdingcr equation," Self--focusing and wave collapse[M]. New York: Springer-Verlag, 1999. 被引量:1
  • 8GINIBRE J, VELO G. On a class of nonlinear Schrodinger equations. I. The Cauchy problem, general case[J]. J. Funct. Anal., 1979(32): 1-32. 被引量:1
  • 9OH Y G. Cauchy problem and Ehrenfest's law of nonlinear Scluodinger equations with potentials[J]. J. Differential Equations, 1989(81): 255-274. 被引量:1
  • 10GHIDAGLIA J M. Finite-dimensional behavior for weakly damped driven Schrodinger equations[J]. Ann. Inst. H. Poincare Anal. Non Lineaire, 1988(5): 365-405. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部