摘要
考虑了具有抑制剂的两种群竞争一种微生物的恒化器模型,其中吸收函数和功能反应函数都是营养的一般单调递增函数,并且一种微生物能够分泌一种对另一种微生物起致命影响的抑制剂.利用常微分方程定性理论,首先得到了平衡点的存在条件和局部渐进稳定性;然后讨论了全局渐进稳定性,以及极限环和Hopf分支的存在性.
This paper considered two organisms competing for a nutrient in the chemostat in the presence of an inhibitor,where the yields and growth rates are general increasing function of the nutrient concentration.The inhibitor is produced by one organisms and is lethal to the other organism.By the theory of qualitative analysis for ordinary equations,first,conditions of the existence and local stability of the rest points are obtain;then the global asymptotical stability,the existence of limit cycles and Hopf bifurcation are discussed.
出处
《生物数学学报》
CSCD
北大核心
2011年第3期385-396,共12页
Journal of Biomathematics
基金
Supported by Youth Funded Projects of Chongqing Three Gorges University(2008-sxxyqn-23)