期刊文献+

一种改进的有向无环图支持向量机 被引量:1

A Improved Directed Acyclic Graphs Support Vector Machine
下载PDF
导出
摘要 构造合理的有向无环图是有向无环图支持向量机亟需解决的一个关键问题。本文提出一种改进的有向无环图支持向量机,根据超球支持向量机获得类的最小包围球,根据该最小包围球计算类与类之间的最短距离,根据该最短距离形成最短距离矩阵,根据该最短距离矩阵来构造有向无环图。实验结果表明,该改进算法较传统有向无环图支持向量机分类精度有明显提高。 Constructing reasonable directed acyclic graphs is a key problem that is to be solved urgently. An improved directed acyclic graphs support vector machine is presented, which obtains the minimal hyper-spheres according to the hyper-sphere support vector machine, computes the minimal distances among classes according to the minimal hyper-spheres, gets the minimal distance matrix according to the minimal distances, and constructs the directed acyclic graphs according to the minimal distance matrix. The experimental results show that the algorithm has a higher classification precision, compared with the old directed acyclic graphs support vector machines.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第10期145-148,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60603023) 辽宁省教育厅资助科研课题(2010076)
关键词 有向无环图支持向量机(DAGSVM) 超球支持向量机 最短距离矩阵 directed acyclic graphs support vector machine(DAGSVM) hyper-sphere support vector machine minimal distance matrix
  • 相关文献

参考文献10

  • 1Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995. 被引量:1
  • 2Zhuang Dong, Zhang Benyu, YANG Qiang. Efficient Text Classification by Weighted Proximal SVM[C]//Proc of the 5th IEEE Int'l Conf on Data Mining, 2005:538-545. 被引量:1
  • 3Kazuhiro H. Support Vector Machine with Local Summation Kernel for Robust Face Recognition[C]//Proc of the 17th Int'l Conf on Pattern Recognition, 2004:482-485. 被引量:1
  • 4Aravind G, Hamaker J E, Joseph P. Application of Support Vector Machines to Speech Recognition[J]. IEEE Trans on Signal Processing, 2004, 52(8):2348-2355. 被引量:1
  • 5Krebel U G. Pairwise Classification and Support Vector Ma- chines[C]//Proc of the Advances in Kernel Methods: Sup port Vector Learning, 1999 : 255-268. 被引量:1
  • 6Bennett K P. Combining Support Vector and Mathematical Programming Methods for Classification[C]//Proc of the Advances in Kernel Methods: Support Vector Learning, 1999:307-326. 被引量:1
  • 7Platt J C,Cristianini N,Shawe-Taylor J. Large Margin DAGs for Multiclass Classification[C]//Proc of the Advances in Neural In- formation Processing Systems, 2000:547-553. 被引量:1
  • 8Hsu C W, Lin C J. A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Trans on Neural Net- works, 2002, 13(2):415-425. 被引量:1
  • 9Maneivitz L M, Yousef M. One Class SVMs For Document Classification[J]. Jounal of Machine Leaning Reaseareh, 2002, (2) : 139-154. 被引量:1
  • 10朱美琳,杨佩.基于支持向量机的多分类增量学习算法[J].计算机工程,2006,32(17):77-79. 被引量:11

二级参考文献7

  • 1Blanz V,Sch(o)lkopf B,Bültho H,et al.Comparison of View-based Object Recognition Algorithms Using Realistic 3D Models[C].Proc.Of ICANN'96.Berlin:Springer-Verlag,1996:251-256. 被引量:1
  • 2Mattera D,Haykin S.Support Vector Machines for Dynamic Reconstruction of a Chaotic System[M].Cambridge:MIT Press,1999:211-242. 被引量:1
  • 3Syed N A,Liu H,Sung K.Incremental Learning with Support Vector Machines[C].Proceedings of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence (IJCAI-99),Stockholm,Sweden,1999. 被引量:1
  • 4Ralaivola L,d' Alch-Buc F.Incremental Support Vector Machine Learning:A Local Approach[C].Proc.of ICANN'01.Vienna,Austria:Springer,2001:322-330. 被引量:1
  • 5Erdem Z,Polikar R,Gurgen F,et al.Ensemble of SVMs for Incremental Learning[C].Workshop on Multiple Classifier Systems,2005:246-256. 被引量:1
  • 6KreΒel U.Pairwise Classification And Support Vector Machines[M].Cambridge:MIT Press,1999:255-268. 被引量:1
  • 7Cristianini N,Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge University Press,2000. 被引量:1

共引文献10

同被引文献3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部