期刊文献+

距离扩展目标检测器的最优参数及鲁棒性分析 被引量:2

Optimized Parameters and Robustness Evaluation for Range-Spread Target Detector
下载PDF
导出
摘要 研究了球不变随机向量杂波下的距离扩展目标自适应检测问题,推导了级联二进制积累检测器(CBI)的最优参数;利用辅助数据,基于迭代估计方法获得协方差矩阵结构的近似最大似然估计,设计了具有近似恒虚警率特性的自适应检测器.仿真实验表明,最优CBI在估计目标散射点个数失配情况下具有很好的鲁棒性;随着散射点个数的增加,其在失配情况下的鲁棒性越来越好,且均优于匹配情况下基于目标散射点密度的检测器和不依赖于散射点密度的检测器. Under the spherically invariant random vector clutter,the adaptive detection of range-spread target is addressed.The parameters of cascaded binary integrator(CBI) are optimized.Moreover,based on secondary data,an adaptive CBI is derived,which is approximately of constant false alarm rate.The experimental results show that,the optimized CBI performs robustly for the mismatch between the estimated number of target scatterers and the actual one.In addition,the robustness is enhanced as the number of target scatterers increases.The optimized CBI in mismatch cases outperforms the scatterer-density-dependent detector in match cases and the non-scatterer-density-dependent detector.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第9期2190-2193,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.61032001) 海军航空工程学院青年科研基金(No.HYQN201013)
关键词 非高斯杂波 距离扩展目标 自适应检测 最优参数 鲁棒性分析 non-Gaussian clutter range-spread target adaptive detection optimized parameters robustness evaluation
  • 相关文献

参考文献10

二级参考文献26

  • 1简涛,何友,苏峰,田伟.小波变换在雷达信号检测中的应用[J].海军航空工程学院学报,2006,21(1):121-126. 被引量:18
  • 2简涛,何友,苏峰,李炳荣.一种基于小波变换的信号恒虚警率检测方法[J].信号处理,2006,22(3):430-433. 被引量:6
  • 3E J Kelly. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986,22 ( 1 ) : 115 - 127. 被引量:1
  • 4Karl Gerlach, M J Steiner. Adaptive detection of range distributed targets [ J ]. IEEE Transactions on Signal Processing, 1999,47(7) : 1844 - 1851. 被引量:1
  • 5P K Huges Ⅱ.A high-resolution radar detection strategy[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(5) :663 - 667. 被引量:1
  • 6Karl Gerlach,Michael Steiner,F C Lin. Detection of a spatially distributed target in white noise [ J ]. IEEE Signal Processing Letters, 1997,4(7) : 198 - 200. 被引量:1
  • 7K Yao. A representation theorem and its applications to spherically invariant random processes [J]. IEEE Transactions on Information Theory, 1973,19(5) :600 - 608. 被引量:1
  • 8Jian Tao,He You, Su Feng, et al. Performance characterization of two adaptive range-spread target detectors for unwanted signal[A]. Proceedings of the 9th International Conference on Signal Processing[ C]. Beijing: IEEE, 2008.2326 - 2329. |. 被引量:1
  • 9Barnard T J, Weiner D D. Non-Gaussian clutter modeling with generalized spherically invariant random vectors [ J ]. IEEE Transactions on Signal Processing, 1996,44( 10):2384- 2390. 被引量:1
  • 10Karl Gerlach. Spatially distributed target detection in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35(3) :926 - 934. 被引量:1

共引文献34

同被引文献17

  • 1Mandic D P’Goh V S L. Complex Valued Nonlinear AdaptiveFilters: Noncircularity, Widely Linear and Neural Models[M] .Chichester : Wiley,2009. 被引量:1
  • 2Hjrungnes A. Complex-Valued Matrix Derivatives: With Appli-cations in Signal Processing and Communications [ M ] . NewYork:Cambridge University Press,2011. 被引量:1
  • 3Vaidyanathan P P,Hioong S,Iin Y. Signal Processing and Op-timization for Transceiver Systems[M]. New York: CambridgeUniversity Press,2010. 被引量:1
  • 4Adali T, Haykin S. Adaptive Signal Processing, Next-Genera-tion Solutions[M].Hoboken: Wiley-IEEE Press,2010. 被引量:1
  • 5Schreier P J,Scharf L L. Statistical Signal Processing of Com-plex-Valued Data: the Theory of Improper and Noncircular Sig-nals[M] .New York:Cambridge University Press,2010. 被引量:1
  • 6Wooding R A. The multivariate distribution of complex normalvariables[J].Biometrika, 1956,43(1/2) :212 - 215. 被引量:1
  • 7Goodman N R. Statistical analysis based on a certain multivari-ate con^jlex Gaussian distribution(an introduction) [ J]. TheAnnals of Mathematical Statistics,1963,34( 1) : 152 - 177. 被引量:1
  • 8Kelly E J, Forsythe K M. Adaptive Detection and ParameterEstimation for Multidimensional Signal Models [R]. Lexing-ton :Lincoln Lab,1989. 被引量:1
  • 9Hcinbono B. Second-order complex random vectors and nor-mal distributions [J]. IEEE Transactions on Acoustics, Speech,and Signal Processing, 1996,44(10) :2637 - 2640. 被引量:1
  • 10Pal N, Jin C,Iim W K. Handbook of Exponential and RelatedDistributions for Engineers and Scientists[M]. London: Chap-man & Hall/CRC,2006. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部