期刊文献+

Solutions to Buoyancy-Drag Equation for Dynamical Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Zone

Solutions to Buoyancy-Drag Equation for Dynamical Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Zone
下载PDF
导出
摘要 With a self-similar parameter b(At) = Hi/λi, where At is the Atwood number, Hi and λi are the a.mplluae and wavelength of bubble (i = 1) and spike (i = 2) respectively, we derive analytically the solutions to the buoyancy-drag equation recently proposed for dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing zone. Numerical solutions are obtained with a simple form ofb(At)--- 1/(1 + At) and comparisons with recent LEM (linear electric motor) experiments are made, and an agreement is found with properly chosen initial conditions.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第10期751-755,共5页 理论物理通讯(英文版)
关键词 Buoyancy-Drag equation Rayleigh Taylor mixing Richtmyer Meshkov mixing 动力学演化 混合区 瑞利 泰勒 方程 浮力 拖曳 自相似参数
  • 相关文献

参考文献30

  • 1L. Rayleigh, Scientific Papers, Cambridge University Press, Cambridge (1900). 被引量:1
  • 2G.I. Taylor, Proc. R. Soc. London Ser. A 201 (1950) 192. 被引量:1
  • 3R.D. Richtmyer, Commun. Pure Appl. Math. 13 (1960) 297. 被引量:1
  • 4E.E. Meshkov, Fluid Dyn. 4 (1969) 101. 被引量:1
  • 5J.D. Lindl, Inertial Confinement Fusion, Spring-Verlag, New York (1998). 被引量:1
  • 6G. Dimonte and P. Ramaprabhu, Phys. Fluids 22 (2010) 014104. 被引量:1
  • 7K.O. Mikaelian, Phys. Fluids 21 (2009) 024103. 被引量:1
  • 8B.A. Remington, J. Kane, R.P. Drake, S.G. Glendinning, K. Estabrook, R. London, J. Castor, R.J. Wallace, D. Arnett, E. Liang, R. McCray, A Rubenchik, and B. Fryxell, Phys. Plasmas 4 (1997) 1994. 被引量:1
  • 9Y. Naxiyuki, T. Hada, and K. Tsubouchi, Phys. Plasmas 14 (2007) 122110. 被引量:1
  • 10J.P. Goedbloed, Phys. Plasmas 16 (2009) 122111. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部