期刊文献+

基于混沌免疫粒子群算法的故障特征选择

Fault Feature Selection Based on Chaos Immune Particle Swarm Optimization
下载PDF
导出
摘要 针对传统组合优化方法用于故障特征选择的缺陷问题,提出了基于人工免疫和混沌思想的混合粒子群优化算法的特征选择策略。引入混沌优化和人工免疫系统中的克隆选择机制,利用克隆和混沌变异等算子对算法进行改进,提高种群的多样性,增强了算法跳出局部极值的能力。实验结果表明,该混合粒子群算法比常规粒子群算法具有更快的优化速度,有效提高了特征选择效率,使故障诊断精度有所提高。 Traditional methods for combinatorial optimization defects for fault feature selection problem,Feature selection strategy is proposed based on artificial Immune and chaos hybrid particle swarm optimization algorithm.The introduction of chaos optimization and artificial immune system clonal selection mechanism,the use of cloning and chaotic mutation operator to improve algorithm to improve population diversity,and enhance algorithm ability to jump out of local optimum.Experimental results show that hybrid particle swarm algorithm than conventional particle swarm optimization algorithm has a faster speed,improve efficiency of feature selection,so that improved accuracy of fault diagnosis.
作者 李小青
机构地区 浙江万里学院
出处 《煤矿机械》 北大核心 2011年第11期244-247,共4页 Coal Mine Machinery
关键词 粒子群算法 混沌 免疫接种 特征选择 particle swarm optimization chaos immunization feature selection
  • 相关文献

参考文献5

二级参考文献29

  • 1YANG Li-xia,PAN Jian-jun,YUAN Shao-feng.Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China[J].Journal of Forestry Research,2006,17(1):39-43. 被引量:10
  • 2张海龙,王莲芝.自动文本分类特征选择方法研究[J].计算机工程与设计,2006,27(20):3840-3841. 被引量:45
  • 3廖建坤,叶东毅.基于免疫粒子群优化的最小属性约简算法[J].计算机应用,2007,27(3):550-552. 被引量:17
  • 4Croisant W J, Feickert C A, Melnerney M K. A differential magnetic permeability model for pulsed magnetic field calculations[J]. IEEE Trans Magn, 1996,32 ( 5 ) : 4326 - 4328. 被引量:1
  • 5Mohnke O, Yaramanci U. Pore size distributions and hydraulic conductivities of rocks derived from magnetic resonance sounding relaxation data using multi-exponential decay time inversion [J].Journal of Applied Geophysics, 2008,66 ( 3/4 ) : 73 - 81. 被引量:1
  • 6Kokot S, Zembaty Z. Damage reconstruction of 3D frames using genetic algorithms with Levenberg-Marquardt local search[J]. Soil Dynamics and Earthquake Engineering,2009,29(2) : 311 - 323. 被引量:1
  • 7Lord D, Park P Y J. Investigating the effects of the fixed and varying dispersion parameters of Poisson-gamma models on empirical Bayes estimates[J]. Accident Analysis and Prevention,2008,40(4) : 1441 - 1457. 被引量:1
  • 8Coppi R, Urso P D, Giordani P, et al. Least squares estimation of a linear regression model with LR fuzzy response[J].Computational Statistics and Data Analysis, 2006,51 ( 1 ) : 267 - 286. 被引量:1
  • 9Hong W C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model [ J ]. Energy Conversion and Management, 2009,50 : 105 - 117. 被引量:1
  • 10Delgado M, Martin-Bautista M J, Sanchez D, et al Mining text data: Special features and patterns [C] Proc of ESF Exploratory Workshop. London, 2002 : 32-38. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部