期刊文献+

Event temporal relation computation based on machine learning 被引量:2

Event temporal relation computation based on machine learning
下载PDF
导出
摘要 Temporal relation computation is one of the tasks of the extraction of temporal arguments from event, and it is also the ultimate goal of temporal information processing. However, temporal relation computation based on machine learning requires a lot of hand-marked work, and exploring more features from discourse. A method of two-stage machine learning based on temporal relation computation (TSMLTRC) is proposed in this paper for the shortcomings of current temporal relation computation between two events. The first stage is to get the main temporal attributes of event based on classification learning. The second stage is to compute the event temporal relation in the discourse through employing the result of the first stage as the basic features, and also employing some new linguistic characteristics. Experiments show that, compared with the artificial golden rule, the computational efficiency in the first stage is much higher, and the F1-Score of event temporal relation which is computed through combining multi-features may be increased at 85.8% in the second stage. Temporal relation computation is one of the tasks of the extraction of temporal arguments from event, and it is also the ultimate goal of temporal information processing. However, temporal relation computation based on machine learning requires a lot of hand-marked work, and exploring more features from discourse. A method of two-stage machine learning based on temporal relation computation (TSMLTRC) is proposed in this paper for the shortcomings of current temporal relation computation between two events. The first stage is to get the main temporal attributes of event based on classification learning. The second stage is to compute the event temporal relation in the discourse through employing the result of the first stage as the basic features, and also employing some new linguistic characteristics. Experiments show that, compared with the artificial golden rule, the computational efficiency in the first stage is much higher, and the F1-Score of event temporal relation which is computed through combining multi-features may be increased at 85.8% in the second stage.
出处 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期487-492,共6页 上海大学学报(英文版)
基金 Project supported the National Natural Science Foundation of China(Grant No.60975033) the Basic Scientific Research Project of International Centre for Bamboo Rattan(Grant No.1632009006) the Shanghai Leading Academic Discipline Project(Grant No.J50103)
关键词 event temporal relation machine learning temporal relation computation temporal information processing event temporal relation, machine learning, temporal relation computation, temporal information processing
  • 相关文献

参考文献3

二级参考文献42

共引文献70

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部