期刊文献+

不确定时滞系统非脆弱鲁棒H_∞控制研究 被引量:1

Non-fragile and Robust H_∞ Control for Time-delay Systems with Uncertainties
下载PDF
导出
摘要 针对不确定时滞系统,应用鲁棒稳定与鲁棒性能准则约束条件,设计鲁棒性较强的非脆弱鲁棒控制器,使得当控制器本身在一定范围内变化时,仍能保证状态反馈闭环系统的稳定性和鲁棒性能指标,进而有效抑制扰动输入信号以及控制器参数变化对系统性能的影响。该控制器的设计过程充分考虑时滞的影响,进而克服已有时滞无关型结论的保守性。最后利用线性矩阵不等式给出γ次优H∞鲁棒控制器设计方法。仿真结果表明所设计控制器的有效性和实用性。 For the time-delay systems with uncertainties,a non-fragile and robust controller was designed by robust stabilization and robust performance restriction rule.This controller is more robust than else.So that it can hold the stability and robust performance index of state feedback closed loop system with controller gain variations.Furthermore,the proposed method can effectively restrain the influences to system performance caused by disturbance input and uncertainty of controller parameter.During the course of designing controller,the delay in system was a major factor to be considered.So the proposed results overcome the conservativeness of existing delay independent results.Finally,the suboptimum H_∞ state feedback controller was derived by the linear matrix inequalities(LMIs).The simulation results illustrate the validity and practicability of the proposed controller design method.
作者 郝智红 俞鹏
出处 《计算技术与自动化》 2011年第3期24-28,共5页 Computing Technology and Automation
关键词 不确定时滞系统 时滞依赖型 非脆弱鲁棒H∞控制 线性矩阵不等式 Time-delay systems with uncertainties Delay-dependent Non-fragile and robust H_∞ control linear matrix inequality
  • 相关文献

参考文献10

二级参考文献48

  • 1刘岑枫,胡刚,任俊超.不确定广义系统的H_∞保成本控制[J].电机与控制学报,2005,9(2):124-127. 被引量:5
  • 2张友,翟丁,刘满,张嗣瀛.时滞依赖型中立系统的观测器设计与镇定[J].控制理论与应用,2005,22(5):783-789. 被引量:5
  • 3袁薇,张庆灵,杜宝珠.不确定离散广义系统的H_∞保成本控制[J].系统工程与电子技术,2007,29(1):121-124. 被引量:5
  • 4Hale J K, Verduyn Lunel S M. Strong stabilization of neutral functional differential equations. IMA Journal of Mathematical Control and Information, 2002, 19(1-2): 5-23. 被引量:1
  • 5Liu X G, Wu M, Martin R, Tang M L. Stability analysis for neutral systems with mixed delays. Journal of Computational and Applied Mathematics, 2007, 202(2): 478-497. 被引量:1
  • 6Michiels W, Vyhlidal T. An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type. Automatica, 2005, 41(6): 991-998. 被引量:1
  • 7Bonnet C, Partington J R. Stabilization of some fractional delay systems of neutral type. Automatica, 2007, 43(12): 2047-2053. 被引量:1
  • 8Hu G D, Liu M Z. Stability criteria of linear neutral systems with multiple delays. IEEE Transactions on Automatic Control, 2007, 52(4): 720-724. 被引量:1
  • 9Hale J K, Verduyn Lunel S M. Stability and control of feed- back systems with time delays. International Journal of Systems Science, 2003, 34(8-9): 497-504. 被引量:1
  • 10Pandolfi L. Stabilization of neutral functional differential equations. Journal of Optimization Theory and Applications, 1976, 20(2): 191-204. 被引量:1

共引文献54

同被引文献23

  • 1淳于江民,张珩.无人机的发展现状与展望[J].飞航导弹,2005(2):23-27. 被引量:91
  • 2Valavanis K P. Advances in unmanned aerial vehiclesstate of the art and the road to autonomy,intelligentsystems, control and automation : Science andengineering [ M ]. Berlin, Germany : Springer-Verlag,2007:73-114. 被引量:1
  • 3Bramwell A R S, Done G, Balmford D. Bramwell* shelicopter dynamics [ M ]. 2nd ed. Oxford, UK:Butterworth-Heinemann ,2001:77-114. 被引量:1
  • 4Lien C H. Non-fragile guaranteed cost control foruncertain neutral dynamic systems with time-varyingdelays in state and control input[ J]. Chaos,Solitons &Fractals,2007,31(4) :889-899. 被引量:1
  • 5Wang C, Shen Y. Delay-dependent non-fragile robuststabilization and Hx control of uncertain stochasticsystems with time-varying delay and nonlinearity[ J].Journal of the Franklin Institute,2011 ; 348 ( 8 ):2174-2190. 被引量:1
  • 6Hu H,Jiang B,Yang H. Non-fragile H2 reliable controlfor switched linear systems with actuator faults [ J ].Signal Processing,2013,93 (7) :1804-1812. 被引量:1
  • 7Ren J C,Zhang Q L. Non-fragile PD state controlfor a class of uncertain descriptor systems[ J] . AppliedMathematics and Computation, 2012,218 (17):8806-8815. 被引量:1
  • 8Boyd S, Ghaoui L E, Feron E, et al. Linear matrixinequalities in system and control theory [ M ].Philadelphia, PA,USA ; SIAM,1994. 被引量:1
  • 9Chilali M, Gahinet P, Apkarian P. Robust pole-placement in LMI regions [ J ]. IEEE Transactions onAutomatic Control, 1999,44( 12) :2257-2270. 被引量:1
  • 10Scherer C,Gahinet P, Chilali M. Multi-objectiveoutput-feedback control via LMI optimization[ J]. IEEETransactions on Automatic Control,1997 : 42 ( 7 ) : 896-911. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部