期刊文献+

面向实时定位系统的位置区域索引 被引量:4

A Location Index for Range Query in Real-Time Locating System
下载PDF
导出
摘要 在移动应用领域中,移动对象实时位置的区域查询在整个系统的分析、决策、预测等方面具有重要的作用.采用射频识别技术进行定位识别的实时定位系统具有对象分布区域化、不同子区域对象分布密度不均匀等特点.基于这些特点,提出了一种新的面向实时定位系统的区域索引机制,用以提高移动对象实时位置的区域查询的性能.该索引机制根据系统中对象的分布情况进行区域划分,利用R树对划分区域进行索引,并根据每个划分子区域对象的分布密度,用不同密度的网格索引位于该区域内部的对象的位置;同时进一步对提出的索引结构进行缓存感知的优化.实验结果表明,当对象分布不均时,该索引具有比R树和网格更优的区域查询性能,同时保持了良好的更新性能. The range query of moving objects' location is very important in many mobile applications, especially in analyzing, decision making, predicting, etc. Real-time locating system (RTLS) is a mobile system using RFID technology with the feature of skew object density. There are always storage wastes or performance decline while using existing indices in real-time locating system because of the skew object density~ In this paper, a novel index mechanism called RPI (region partition index) is proposed to answer the range queries in RTLS. It firstly divides the region of the RTLS into sub regions according to the object density, and then indexes the division regions with R-tree. The object locations in these division regions are indexed by grid. Furthermore, this index is optimized to be cache conscious. In the optimized index structure, the object locations in a of arrays. The size of each array is determined by the size of the CPU cache show that the new index has better search performance than R-tree and prominent update performance while object density is skew. The optimize performance improvement because it sharply reduces the cache miss rate in grid line grid cell are stored in a list ~ Experimental results and still keeps d index also brings s range queries. quite trong
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第10期1908-1917,共10页 Journal of Computer Research and Development
基金 "核高基"国家科技重大专项基金项目(2010ZX01042-001-001-05) 国家"八六三"高技术研究发展计划基金项目(2008AA04A105)
关键词 位置索引 区域查询 射频识别技术 实时定位系统 R树 网格 location index range query RFID RTLS R-tree grid
  • 相关文献

参考文献13

  • 1Welbourne E, Khoussainova N, Letchner J, et al. A system for specifying, detecting, and managing RFID events [C] // Proc of the 6th Int Conf on Mobile Systems, Applications, and Services. New York.. ACM, 2008:17-20. 被引量:1
  • 2彭小娟,刘世安,熊春如,田瑞利.复杂事件处理在大规模RFID数据通信中的应用研究[J].化工自动化及仪表,2009,36(4):76-79. 被引量:7
  • 3Guttman A. R-trees: A dynamic index structure for spatial searching [C] //Proc of ACM SIGMOD'84. New York: ACM, 1984:47-57. 被引量:1
  • 4Saltenisy S, Jensen C S, Leutenegger S T, et al. Indexing the positions of continuously moving objects [C]//Proc of the 2000 ACM SIGMOD Int ConI on Management of Data. New York:ACM, 2000:331-342. 被引量:1
  • 5Kwon D, Lee S. Indexing the current positions of moving objects using the lazy update r-tree [C] //Proc of the 3rd Int Conf on Mobile Data Management. Los Alamitos, CA : IEEE Computer Society, 2002:113-120. 被引量:1
  • 6Pfoser D, Jensen C S, Theodoridis Y. Novel approaches to the indexing of moving object trajectories [C] //Proc of the 26th Int Conf on VLDB. San Francisco: Morgan Kaufmann, 2000. 被引量:1
  • 7Nievergelt J, Hinterberger H, Sevcik K C. The grid file: An adaptable, symmetric multi key file structure [J]. ACM Trans on Database Systems,1984, 9(1): 38-71. 被引量:1
  • 8Mouratidis K, Papadias D, Hadjieleftheriou M. Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring [C] //Proc of ACM SIGMOD'05. New York: ACM, 2005: 634-645. 被引量:1
  • 9Xiong Xiaopeng, Mokbel M F, Aref W G. SEA CNN: Scalable processing of continuous k-nearest neighbor queries in spatio temporal databases [C] //Proc of the 21st Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2005:643-654. 被引量:1
  • 10Jensen C S, Lin D, Ooi B C. Query and update efficient B^+- tree based indexing of moving objects [C] //Proc of the 30th Int Conf on VLDB. San Francisco: Morgan Kaufmann, 2004, 768-779. 被引量:1

二级参考文献12

  • 1WELBOURNE E, KHOUSSAINOVA N, LETCHNER J, et al. A System for Specifying, Detecting, and Managing RFID Events [ C ]//Proceeding of the 6th International Conference on Mobile Systems, Applications, and Services. Cascadia,2008 : 17 - 20. 被引量:1
  • 2ZENG L, LEI H, KOYANAGI T, et al. Model Analysis for Business Event Processing [ J ]. IBM Systems Journal, 2007,46(40) :817 -831. 被引量:1
  • 3SADRI R, ZANIOLO C, ZARKESH A, et al. Expressing and Optimizing Sequence Queries in Database Systems [ J ]. ACM Transactions on Database Systems (TODS) ,2004,29 ( 2 ) : 282 -318. 被引量:1
  • 4SESHADRI P, LIVNY M, RAMAKRISHNAN R. The Design and Implementation of a Sequence Database System [ C ]// Proceedings of the 22th International Conference on Very Large Data Bases. 1996:99 - 110. 被引量:1
  • 5ZANG C, FAN Y. Complex Event Processing in Enterprise Information Systems Based on RFID [ J ]. Enterprise Information Systems,2007,1 ( 1 ) :3 -23. 被引量:1
  • 6DERAKHSHAN R, ORLOWSKA M E, LI X. RFID Data Management: Challenges and Opportunities [ C ]//IEEE International Conference on RFID 2007. TX, USA, 2007 : 175 - 182. 被引量:1
  • 7GONZALEZ H, HAN J, LI X,et al. Warehousing and Analyzing Massive RFID Data Sets [ C ]//Proc of the International Conference on Data Engineering ( ICDE06 ) , 2006, ( 1 ) : 1 - 10. 被引量:1
  • 8WANG H, L1U P. Temporal Management of RFID Data[ C]// Proceeding of the VLDB05. 2005:1128 - 1139. 被引量:1
  • 9PALMER M. Seven Principles of Effective RFID Data Management[ M ]. Progress Software' s Real Time Division ,2004. 被引量:1
  • 10DEBUNNE G, DESBRUN M, CANI M-P, et al. Dynamic Real-time Deformations using Space & Time Adaptive Sampling [ M]. ACM SIGGRAPH,2001:12 - 17. 被引量:1

共引文献6

同被引文献59

  • 1肖伟器,冯玉才,缪勇武.空间对象数据库的网格索引机制[J].计算机学报,1994,17(10):736-742. 被引量:23
  • 2王宏勇,郭建星.空间运动对象与时空数据类型研究[J].地理与地理信息科学,2005,21(5):1-5. 被引量:4
  • 3郑宇.城市计算与大数据[J].中国计算机学会通讯,2013,9(8):6-16. 被引量:4
  • 4Dean Jeffrey, Ghemawat Sanjay. MapReduce: Simplified Data Processing on Large Clusters[J]. Communications of the ACM, 2008,51 (1):107-113. 被引量:1
  • 5Valiant Leslie G. A Bridging Model for Parallel Computation[J]. Communication of the ACM, 1990,33 (3):103-111. 被引量:1
  • 6Jin Che-Qing, Yi Ke,Chen Lei,Yu Xu,LinXue Min. Slieling Window Top-k Queries on Uncertain Stream. Proceedings of the VLDB Endowment, 2008,1 ( 1 ):301-312. 被引量:1
  • 7G.Cormade,M.Garofalakis. Sketching Probabilistic Data Stream. Proceeding of the 2007 ACM SIGMOD International Conference on Management of Data. Bejing,2007:281-292. 被引量:1
  • 8White Tom. Hadoop: The Definitive Guide. O'Reilly : Yahoo! Press, 2009. 被引量:1
  • 9王祖超,郭翰琦,袁晓如.城市交通的可视化分析研究[J].中国计算机学会通讯,2013,9(8):38-43. 被引量:1
  • 10Mourat idis K, Yiu M L, Papadias D et al. Continuous Nearest Neighbor Monitoring in Road Networks[J]. Proceedings of the International Conference on Very Large Databases. Seoul, Korea, 2006:43-54. 被引量:1

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部