期刊文献+

基于显著性区域的图像分割 被引量:3

Image Segmentation Based on Salient region
下载PDF
导出
摘要 在经典的Chan-Vese模型中结合显著性分析,提出了一种有效的目标分割方法.即首先利用频谱残差方法提取图像的显著性区域,针对阈值分割方法的缺点使用改进的自适应阈值分割方法获取目标的大致轮廓,并以此轮廓作为Chan-Vese模型中初始曲线.该方法使得活动轮廓可以从靠近目标物体的位置进行演化,去除复杂背景的干扰.这样就解决了背景复杂时无法得到较为准确的边缘的问题;同时,也减少了CV模型的迭代次数.实验结果表明无论是背景复杂的灰度图像还是医学彩色图像,该算法的分割精度和运行效率都优于CV模型. An effective object segmentation method is proposed which combines Chan-Vese model with saliency map.It firstly uses spectral residual method to extract the saliency region,then gets the general contours of the object using the improved adaptive threshold segmentation to aim at the shortcoming of the threshold segmentation.It makes this contours as the initial curves of Chan-Vese model.This method ensures the active contours evolve close to the object and removes the obstruction from the complex background.It solves the problem that accurate edge can't be obtained while the background of the image is complex;at the same time,it greatly reduces the number of iterations of the CV model.The experimental results show that the proposed algorithm is better than the CV method on precision and efficiency both for the complex gray image and medical color image.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第10期21-23,27,共4页 Microelectronics & Computer
基金 江苏省高校自然科学基金计划项目(08KJB520001) 江苏省"青蓝工程"资助 淮安市科技项目(HAG2010030)
关键词 显著图 水平集 频谱残差 图像分割 saliency map level set spectral residual image segmentation
  • 相关文献

参考文献7

  • 1Fox C. Segmentation of edge preserving gradient vector flow., an approach toward automatically initializing and splitting of snakes[C]//IEEE Conference on Computer Vision and Pattern Recognition. America, 2005. 被引量:1
  • 2Chan T F, Vese L A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001,10 (2) :266-277. 被引量:1
  • 3Hou X, Zhang L. Saliency detection., a spectral residual approach [C]//IEEE Conference on Computer Vision and Pattern Recognition. Germany, 2007. 被引量:1
  • 4Chan T F, Sandberg B Y, Vese L A. Active contours without edges for vector-valued images[J]. Journal of Visual Communication and Image Representation, 2000 (11) :130-141. 被引量:1
  • 5陆悌亮,龚声蓉.一种基于水平集的运动视频对象分割算法[J].微电子学与计算机,2007,24(7):105-107. 被引量:1
  • 6Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention[J]. Vision Research, 2000(40): 1489-1502. 被引量:1
  • 7Harel J, Koch C, Perona P. Graph-based visual saliency[J]. Advances in Neural Information Processing Systems, 2007(19) :545-552. 被引量:1

二级参考文献4

同被引文献19

  • 1CHANT F,VESE L A. Active contour without edges[J]. IEEE Transactions on Image Processing,2001,10(2) : 266 - 277. 被引量:1
  • 2HAREL J, KOCH C, PERONA P. Graph-based visual saliency [ J ]. Advances in Neural Information Processing Systems, 2007 ( 19 ) : 545 - 552. 被引量:1
  • 3ITTI L, KOCH C, NIEBUR E. A Model of Saliency Based Visual Attention for Rapid Scene Analysis [ J ]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254 - 1259. 被引量:1
  • 4XIAODI HOU, LIQING ZHANG. Saliency detection: a spectral residual approach [ C]. Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Florida, USA : IEEE ,2007 : 1 - 8. 被引量:1
  • 5ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection [ C ]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Florida, USA: IEEE ,2009:1597 - 1604. 被引量:1
  • 6Bastian Leibe A L,Schiele R Combined object catego-rization and segmentation with an implicit shape model[C]//Proceedings of European Conference ComputerVision* Prague,Czech Republic: Springer, 2004: 755-762. 被引量:1
  • 7Ning J,Zhang L,Zhang D, et al. Interactive imagesegmentation by maximal similarity based region mer-ging [J]. Pattern Recognition, 2010, 43 ( 2 ) : 445-456. 被引量:1
  • 8Ma Y,Zhang H. Contrast-based image attention a-nalysis by using fuzzy growing[C] //Proceedings of theEleventh ACM International Conference on Multimedi-a Berkeley, USA: ACM, 2003:374-381. 被引量:1
  • 9Achanta R,Estrada F,Wils P,et al. Salient regiondetection and segmentation[C]//International Confer-ence on Computer Vision Systems. Santorini Island,Greece : IEEE, 2008:66 - 75. 被引量:1
  • 10Goferman S,Zelnik-Mano L R, Tal A. Context -a-ware saliency detection [ C]//IEEE Conference onComputer Vision and Pattern Recognition. San Fran-cisco* USA:IEEE,2010:70-78. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部