摘要
The water contents of nominally anhydrous clinopyroxene (cpx), orthopyroxene (opx) and olivine (ol) in peridotite xenoliths hosted by Cenozoic basalts from Yingfengling, Zhangchouchun, Fujitian and Lindi, South China, were measured by Micro- FTIR. All cpx and opx grains contained a certain amount of water, which was indicated by the presence of hydroxyls in the crystal structure. The water contents (H20, ppm) of cpx and opx from peridotite xenoliths of the study areas were 293-981, 183-752, 73-586 and 51-423 ppm, and 82-471, 74-571, 53-170 and 9-135 ppm, respectively. No prominent OH absorption bands were detected for any ol grains, indicating that the water contents were below the detection limit (approximately 2 ppm). The entire rock contents recalculated according to mineral volume proportions were 49-163, 48-168, 21-111 and 8-40 ppm, respectively. Combined with previously reported data describing the water contents of peridotite xenoliths worldwide, the results presented here suggest that water distribution in the continental lithospheric mantle is spatially heterogeneous at a global scale. The lithospheric mantle of South China is much richer in water than that of the North China Craton, and is close to that typical of off-craton localities, such as the Basin and Range Province, and Massif Central.
The water contents of nominally anhydrous clinopyroxene (cpx), orthopyroxene (opx) and olivine (ol) in peridotite xenoliths hosted by Cenozoic basalts from Yingfengling, Zhangchouchun, Fujitian and Lindi, South China, were measured by Micro-FTIR. All cpx and opx grains contained a certain amount of water, which was indicated by the presence of hydroxyls in the crystal structure. The water contents (H 2 O, ppm) of cpx and opx from peridotite xenoliths of the study areas were 293-981, 183-752, 73-586 and 51-423 ppm, and 82-471, 74-571, 53-170 and 9-135 ppm, respectively. No prominent OH absorption bands were detected for any ol grains, indicating that the water contents were below the detection limit (approximately 2 ppm). The entire rock contents recalculated according to mineral volume proportions were 49-163, 48-168, 21-111 and 8-40 ppm, respectively. Combined with previously reported data describing the water contents of peridotite xenoliths worldwide, the results presented here suggest that water distribution in the continental lithospheric mantle is spatially heterogeneous at a global scale. The lithospheric mantle of South China is much richer in water than that of the North China Craton, and is close to that typical of off-craton localities, such as the Basin and Range Province, and Massif Central.
作者
WANG Rong 1,2,3 & ZHANG BaoMin 3 1 Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210093, China
3 Faculty of Earth Science, China University of Geosciences, Wuhan 430074, China
基金
supported by National Natural Science Foundation of China (Grant Nos. 40372027, 40872040)