期刊文献+

Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material

Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material
下载PDF
导出
摘要 The intermediate band (IB) solar cell is a promising third-generation solar cell that could possibly achieve very high efficiency above the Shockley-Queisser limit. One of the promising ways to synthesize IB material is to introduce heavily doped deep level impurities in conventional semiconductors. High-doped Ti with a concentration of 10^20 cm^-3- 10^21 cm^-3 in the p-type top Si layer of silicon-on-insulator (SOI) substrate is obtained by ion implantation and rapid thermal annealing (RTA). Secondary ion mass spectrometry measurements confirm that the Ti concentration exceeds the theoretical Mott limit, the main requirement for the formation of an impurity intermediate band. Increased absorption is observed in the infrared (IR) region by Fourier transform infrared spectroscopy (FTIR) technology. By using a lateral p-i-n structure, an obvious infrared response in a range of 1100 nm 2000 nm is achieved in a heavily Ti-doped SOI substrate, suggesting that the improvement on IR photoresponse is a result of increased absorption in the IR. The experimental results indicate that heavily Ti-implanted Si can be used as a potential kind of intermediate-band photovoltaic material to utilize the infrared photons of the solar spectrum. The intermediate band (IB) solar cell is a promising third-generation solar cell that could possibly achieve very high efficiency above the Shockley-Queisser limit. One of the promising ways to synthesize IB material is to introduce heavily doped deep level impurities in conventional semiconductors. High-doped Ti with a concentration of 10^20 cm^-3- 10^21 cm^-3 in the p-type top Si layer of silicon-on-insulator (SOI) substrate is obtained by ion implantation and rapid thermal annealing (RTA). Secondary ion mass spectrometry measurements confirm that the Ti concentration exceeds the theoretical Mott limit, the main requirement for the formation of an impurity intermediate band. Increased absorption is observed in the infrared (IR) region by Fourier transform infrared spectroscopy (FTIR) technology. By using a lateral p-i-n structure, an obvious infrared response in a range of 1100 nm 2000 nm is achieved in a heavily Ti-doped SOI substrate, suggesting that the improvement on IR photoresponse is a result of increased absorption in the IR. The experimental results indicate that heavily Ti-implanted Si can be used as a potential kind of intermediate-band photovoltaic material to utilize the infrared photons of the solar spectrum.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期345-348,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 61036001, 51072194, and 60906035)
关键词 infrared response ion implantation rapid thermal annealing intermediate band solarcell infrared response, ion implantation, rapid thermal annealing, intermediate band solarcell
  • 相关文献

参考文献16

  • 1Luque A and Marti A 1997 Phys. Rev. Lett. 78 5014. 被引量:1
  • 2Gu Y X, Yang T, Ji H M, Xu P F and Wang Z G 2010 Chin. Phys. B 19 088102. 被引量:1
  • 3Wang W, Lin A S and Phillips J D 2009 Appl. Phys. Lett. 95 011103. 被引量:1
  • 4Lo'pez N, Reichertz L A, Yu K M, Campman K and Walukiewicz W 2011 Phys. Rev. Lett. 106 028701. 被引量:1
  • 5Liu X M, Li B C and Huang Q P 2010 Chin. Phys. B 19 097201. 被引量:1
  • 6Liu X M, Li B C, Gao W D and Han Y L 2010 Acta Phys. Sin. 59 1632 (in Chinese). 被引量:1
  • 7Olea J, Toledano-Luque M, Pastor D, San-AndrOs D, Martil I and Gonzalez-Diaz G 2010 J. Appl. Phys. 107 103524. 被引量:1
  • 8Olea J, Gonzalaz-Diaz G, Pastor D and Martil I 2009 J. Phys. D: Appl. Phys. 42 085110. 被引量:1
  • 9Luque A, Marti A, Antolin E and Tablero C 2006 Physica B 382 320. 被引量:1
  • 10Spitzer W and Fan H Y 1957 Phys. Rev. 108 268. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部