期刊文献+

认知无线电网络中的最佳可信度频谱检测算法 被引量:7

Optimal credibility spectrum sensing algorithm in cognitive radio networks
下载PDF
导出
摘要 由于认知无线电网络中的典型硬决策协作频谱检测在数据融合时未考虑各认知用户检测结果的差异性,不能很好地提高检测性能,因此,提出了一种基于检测可信度的协作频谱检测算法.首先,利用各认知用户的平均接收信噪比来获得它们的检测可信度;然后,综合各认知用户的检测结果以及检测可信度来判断授权用户是否使用频带,从而提高了检测性能.仿真结果表明,在低信噪比情况下,相比典型硬决策协作频谱检测,该算法具有较优的接收特性曲线,并在合理选取认知用户检测阈值的条件下,具有较低的检测错误概率. The current cooperative spectrum sensing algorithm with typical hard decisions in cognitive radio networks can not improve sensing capability efficiently due to allocating the same weight to secondary users' decisions in data fusion. To solve the problem, this paper proposes a cooperative spectrum sensing algorithm based on sensing credibility (SC-CSS). It gets secondary users' sensing credibility from their average received SNRs, integrates both their independent decisions and sensing credibility to fuse data, and makes a final sensing decision to improve sensing capability. Simulation results show that compared to the cooperative spectrum sensing algorithm with typical hard decisions, SC-CSS has a better receiver characteristic curve (ROC) and can achieve a lower detection error probability by suitably selecting the detecting threshold for secondary users for a low SNR.
作者 肖林 刘凯
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第5期79-84,共6页 Journal of Xidian University
基金 国家创新研究群体科学基金资助项目(60921001) 973计划资助项目(2010CB731803) 国家自然科学基金资助项目(60933012) 国家科技重大专项资助项目(2009ZX03006-001-003) 中央高校基本科研业务费专项资金资助项目(YWF-10-01-A16) 北京航空航天大学"蓝天新星"计划资助项目(221235)
关键词 认知无线电网络 频谱检测 协作频谱检测 检测可信度 cognitive radio networks spectrum sensing cooperative spectrum sensing sensing credibility
  • 相关文献

参考文献10

  • 1Federal Communications Commission. Spectrum Policy Take Force Report[ R/OL]. [ 2002-12-01]. http://www, fcc. gov/sptf/ head/ines 2002. html. 被引量:1
  • 2Quan Zhi, Cui Shuguang, Poor H V, et al. Collaborative Wideband Sensing for Cognitive Radios[ J]. IEEE Signal Processing Magazine, 2008, 25(6): 60-73. 被引量:1
  • 3Yucek T, Arslan H. A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications[ J]. IEEE Communication Surveys & Tutorials, 2009, 11(1) : 116-130. 被引量:1
  • 4Ma Jun, Zhao Guodong, Li Ye. Soft Combination and Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks [J]. IEEE Trans on Wireless Communications, 2008, 7(11): 4502-4507. 被引量:1
  • 5Duan D, Yang L, Principe J C. Cooperative Diversity of Spectrum Sensing for Cognitive Radio Systems[ J]. IEEE Trans on Signal Processing, 2010, 58(6): 3218-3227. 被引量:1
  • 6Peh E, Liang Y C. Optimization for Cooperative Sensing in Cognitive Radio Networks[ C]//IEEE WCNC. Hong Kong: IEEE Press, 2007: 27-32. 被引量:1
  • 7Zhang Wei, Mallik R K, Letaief K B. Cooperative Spectrum Sensing Optimization in Cognitive Radio Networks[ C]//IEEE ICC. Beijing: IEEE Press, 2008: 3411-3415. 被引量:1
  • 8Peng Qihang, Zeng Kun, Wang Jun, et al. A Distributed Spectrum Sensing Scheme Based on Credibility and Evidence Theory in Cognitive Radio Context[ C]//IEEE PIMRC. Helsinki: IEEE Press, 2006: 1-5. 被引量:1
  • 9Nhan N T, Koo I. An Enhanced Cooperative Spectrum Sensing Scheme Based on Evidence Theory and Reliability Source Evaluation in Cognitive Radio Contex [J]. IEEE Communications Letters, 2009, 13(7): 492-494. 被引量:1
  • 10Quan Zhi, Cui Shuguang, Sayed A H. Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks[ J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2( 1): 28-40. 被引量:1

同被引文献42

  • 1刘建成,刘忠,王雪松,肖顺平,王国玉.高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J].电子与信息学报,2007,29(10):2337-2340. 被引量:36
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on In- formation Theory, 2006,52(4) .. 1289-1306. 被引量:1
  • 3Candes E, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005,51(12) : 4203-4215. 被引量:1
  • 4Havary-Nassab V, Hassan S, Valaee S. Compressive detection for wide-band spectrum sensing [C] ff International Conference on Acoustics, Speech, and signal Processing. Dallas, TX, USA, Mar. 2010:3094-3097. 被引量:1
  • 5Needell D, Tropp J A. CoSaMP: Iterative signal recovery fror incomplete and inaccurate samples[J]. ApplComput Harmon A1 nal, 2009,26 (3) .- 301-321 1. 被引量:1
  • 6Tropp J A,Gilbert A C. Signal recovery from random measure- ments via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007,53(12) : 4655-4666. 被引量:1
  • 7Davis G, Mallat S, Avetlaneda M. Adaptive greedy approxima- tions[J]. Constructive Approximation, 1997,13(1) : 57-98. 被引量:1
  • 8Needell D, Vershynin tL Uniform uncertainty principle and sig-nal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2007, 9 ( 3 ) .. 317- 334. 被引量:1
  • 9LuGan D T T, Nam N, Tran T D. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//42nd Asi/omar Conference on Signal, Systems and Computers. Pacific Grove, USA: IEEE Press, 2008 .. 581-587. 被引量:1
  • 10Quan Zhi, Cui Shu-guang, Poor H V, et al. Collaborative Wide- band Sensing for Cognitive Radios [J]. IEEE Signal Processing Magazine, 2008,25 (6) : 60-73. 被引量:1

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部