期刊文献+

基于Nash均衡的地空导弹兵混编群火力运用策略 被引量:1

Applying fire strategies of ground-to-air missile composite groups based on Nash equilibrium
下载PDF
导出
摘要 建立了地空导弹兵混编群作战模型。该模型是一个离散、带有战斗力损耗的战斗状态向量空间模型。在混编群作战模型的基础上,给出地空导弹兵混编群火力运用目标函数,明确地空导弹兵混编群最优火力运用策略是混编群内各火力单位的最优射击策略组合,称为混编群火力运用的Nash均衡策略。针对求解地空导弹兵混编群火力运用问题的特点,改进了免疫粒子群算法,并验证了算法正确性。通过仿真得到地空导弹兵混编群火力运用策略,并给出战术解释。 The model which is a discrete and attrited vector space one with a state of war for the ground-to-air missile (GAM) composite group is established. An objective function of GAM composite groups is given based on the model, and one definition is defined, it is that the optimization strategy of the GAM composite group called applying fire strategy of Nash equilibrium is composed of strategies of fire units within the GAM eomposite group. Furthermore, aiming at solving the problem of applying fire of GAM composite groups, an improved immune particle swarm optimization algorithm is proposed, and the accuracy of the algorithm is improved. Finally, according to the simulation analysis, the applying fire strategy of the GAM composite group is obtained with its tactical explanation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第10期2239-2243,共5页 Systems Engineering and Electronics
关键词 地空导弹兵混编群 NASH均衡 免疫粒子群 火力运用 GAM composite group Nash equilibrium immune particle swarm applying fire
  • 相关文献

参考文献11

  • 1王凤山,李孝军,马拴柱..现代防空学[M].北京:航空工业出版社,2008:361.
  • 2陈杰生著..地面防空战术混成群作战研究[M].北京:军事科学出版社,2010:287.
  • 3Wei M, Chen G S, CruzJ B, et al. Game theoretic modeling and control of military operations with partially emotional civilian players[J]. Decision Support Systems, 2008,44 (7) :565 - 579. 被引量:1
  • 4余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 5Nair K G, Tanjith G. Solution of 3*3 games using graphical method[J]. European Journal of Operational Research, 1999, 112(2) :472- 478. 被引量:1
  • 6Datta R S. Using computer algebra to find Nash equilibrium[C]// Proc. of the International Symposium on Symbolic and Algebraic Computation, 2003 : 74 - 93. 被引量:1
  • 7Thomas R. Genetic algorithm learning and evolutionary games[J].Journal of Economic Dynamics & Control ,2001,25(6):1019 -1037. 被引量:1
  • 8Galati D G, Simaan M. Effectiveness of the Nash strategies in competitive multi-team target assignment problems[J]. IEEE Trans. on Aerospace and Electronic Systems ,2007,43(1) :126 - 134. 被引量:1
  • 9瞿勇,宋业新,张建军.一类模糊多目标双矩阵对策的粒子群优化算法[J].海军工程大学学报,2009,21(3):6-11. 被引量:5
  • 10Ma F, Zhou X G, Cao Z Y, et al. Firing application strategies of GAM composite group based on Stackelberg-Nash decision model[C]//Proc, of the Computer Application and System Modeling, 2010 : 295 - 298. 被引量:1

二级参考文献17

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2张荣沂.一种新的集群优化方法——粒子群优化算法[J].黑龙江工程学院学报,2004,18(4):34-36. 被引量:18
  • 3余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 4NISHIZAKI I,SAKAWA M.Equilibrium solutions for multiobjective bimatrix games incorporating fuzzy goals[J].Journal of Optimization Theory and Application,1995,86:433-458. 被引量:1
  • 5NISHIZAKI I,SAKAWA M.Equilibrium solutions in multiobjective bimatrix games with fuzzy payoffs and fuzzy goals[J].Fuzzy Sets and Systems,2000,111:99-116. 被引量:1
  • 6Nair K G,Tanjith G.Solution of 3×3 Games Using Graphical Method [J].European Journal of Operational Research,1999,112:472-478. 被引量:1
  • 7Lemke C,Howson J.Equilibrium Points of Bimatrix Games [J].Journal of Society of Industrial and Applied Mathematics,1964,12:413-423. 被引量:1
  • 8Herings P J J,Peeters R J A P.A Differentiable Homotopy to Compute Nash Equilibriua of n-Person Games [J].Economic Theory,2001,18:159-186.[4] Maynard S J,Price G.The Logic of Animal Conflict [J].Nature,1973,246:15-18. 被引量:1
  • 9Maynard S J.Evolution and the Theory of Games [M].Cambridge,United Kingdom:Cambridge University Press,1982. 被引量:1
  • 10Thomas R.Genetic Algorithm Learning and Evolutionary Games [J].Journal of Economic Dynamics & Control,2001,25:1019-1037. 被引量:1

共引文献39

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部