期刊文献+

自动机制设计中一种改进的混沌蚁群算法 被引量:1

An improved chaotic ant swarm algorithm in automated mechanism design
下载PDF
导出
摘要 针对自动机制设计计算复杂度会随具体问题规模的增大而呈指数增长等问题,提出了一种改进的混沌蚁群算法。在机制设计基础上,依据激励兼容和个人理性约束,分析了自动机制设计中的占优策略机制模型和贝叶斯—纳什均衡机制模型,并将改进的算法用于实现这2种机制模型。结果表明:该算法在公共货物配置问题上取得了较好的效果。 Aiming at the problems of computational complexity' s exponential growth with the size' s increment of the specific problems in automated mechanism design, an improved chaotic ant swarm algorithm is presented. Based on mechanism design, according to constraints of incentive compatibility and individual rationality, models are analyzed for the dominant strategy mechanism and Bayesian-Nash equilibrium mechanism in automated mechanism design, and both of the mechanism models are achieved using the improved algorithm. It is demonstrated that the improved algorithm has achieved good effect on public goods distribution problems.
出处 《传感器与微系统》 CSCD 北大核心 2011年第10期144-147,共4页 Transducer and Microsystem Technologies
基金 南京市留学基金资助项目(ZBW302001)
关键词 机制设计 混沌蚁群算法 占优策略 纳什均衡 货物配置 mechanism design chaotic ant swarm algorithm dominant strategy Nash equilibrium goods distribution
  • 相关文献

参考文献9

  • 1Conitzer V, Sandholm T. Complexity of mechanism design [ C ]// Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence ( UAI-02 ) , Edmonton, Canada, 2002 : 103 - 110. 被引量:1
  • 2Prize Committee of the Royal Swedish Academy of Sciences. Mechanism design theory [ J/OL ],( 2007-10-15 ) [ 2010-03- 26 ]. http ://nobelprize. org/nobel_prizes/economics/laureates/ 2007/ecoadv07. pdf. 被引量:1
  • 3Nisan N, Ronen A. Algorithmic mechanism design [ J ]. Game and Economic Behavior,2001,35:166 -192. 被引量:1
  • 4Samuel I, Anthony M, Mukund S. Stochastic Mechanism De- sign [ M ]. Heidelberg : Springer Berlin ,2007,4858:269 -280. 被引量:1
  • 5Giuseppe L, Luca R, Chris S. Uncertainty in Mechanism De- sign [ J/OL].( 2009-10-01 ) [ 2010-03-26 ]. http ://faculty. fu- qua. duke. edu/rigotti/bio/mechanismdesign, pdf. 被引量:1
  • 6Sandholm T. Automated mechanism design:A new application area for search algorithms [ J ]. Lecture Notes in Computer Science,2003,2833:19-36. 被引量:1
  • 7李丽香..一种新的基于蚂蚁混沌行为的群智能优化算法及其应用研究[D].北京邮电大学,2006:
  • 8Yevgeniy V. Mechanism design and analysis using simulation- based [ D ]. Mt. Pleasant : University of Michigan ,2008. 被引量:1
  • 9Hamidrcza R, Karem F. An improved feature selection method based on ant colony optimization (ACO) evaluated on face recog- nition system[ J]. Applied Mathematics and Computation,2008, 205 (2) :716 -725. 被引量:1

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部