期刊文献+

形态小波域声呐图像谱聚类去噪算法研究

Research on spectral clustering met algorithm of sonar image denoising in morphological wavelet domain
下载PDF
导出
摘要 针对声呐图像噪声污染严重的问题,在基于形态小波的声呐图像去噪方法中引入了谱聚类算法以实现低信噪比下图像的去噪。给出基于形态中点小波的声呐图像去噪法,在此基础上引入谱聚类的概念,针对谱聚类能快速实现数据分类的特点,对形态中点小波分解后的高频小波系数进行分类,使得包含噪声与细节信号部分的小波系数得以分离。对分离后的两类小波系数分别进行相应的处理,通过与低频小波系数的重构即可得到去噪后的图像。仿真实验表明:该方法在信噪比等性能指标方面均优于其他小波去噪方法,验证了所提方法的可行性和有效性。 Aiming at the serious noise pollution problems in sonar image, spectral clustering algorithm is introduced into denoising method based on morphological wavelet in order to realize image denoising with low SNR. Sonar image denoising method based on morphological midpoint wavelet is given. The concept of spectral clustering is introduced and used for the classification of high-frequency wavelet coefficients after morphological midpoint wavelet decomposition because of its fast data claasification features. The wavelet coefficients including noise and detail signal can be separated. After being seperated, the two kinds of wavelet coefficients are respectively and corresponding processed. The denoised image can be obtained by the reconstruction of lowfrequency wavelet coefficients. The simulation experiments show that the proposed method are better than other wavelet denoising methods and the feasibility and effectiveness of the proposed method are verified.
出处 《传感器与微系统》 CSCD 北大核心 2011年第10期41-43,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(5090902560772128)
关键词 声呐图像去噪 形态中点小波 谱聚类 sonar image denoising morphological midpoint wavelet spectral clustering
  • 相关文献

参考文献8

二级参考文献33

  • 1侯景华,权春娟,马晓军.M带小波变换在图像去噪中的应用[J].甘肃科学学报,2008,20(4):132-135. 被引量:1
  • 2欧阳春娟,熊勇,欧阳迎春,杨群生.一种基于小波包变换的图像去噪算法[J].电脑开发与应用,2006,19(3):8-9. 被引量:1
  • 3董卫军,周明全,耿国华.一种新的基于多小波的图像去噪算法[J].计算机应用与软件,2006,23(4):6-7. 被引量:1
  • 4[1]O.Alkin and H.Caglar. Design of efficient M-band coders with linear-phase and perfect-reconstruction properties [J]. IEEE Trans. Signal Processing,1995,43(7): 1579~ 1590. 被引量:1
  • 5[2]Hehong Zou. Tewfik Ahmed Ⅱ,Discrete Orthogonal M-band Wavelet Decompositions[J]. IEEE Trans. Signal Processing, 1992,4(4):605~608 被引量:1
  • 6[3]D.L.Donoho. De-noising by Soft-thresholding. IEEE Trans. Information Theory. 1995, 41(3): 613~627. 被引量:1
  • 7[5]S.G Mallat. Atheory for Multiresolution Signal Decomposition:the Wavelet Representation. IEEE Trans. PAMI, 1989,11(11):674~693 被引量:1
  • 8[7]Alin Achim,Anastasios Bezerianos and Panagiotis Tsakalides. Novel Bayesian Multiscale Method for Speckle Removal in Ultrasound Medical Images. IEEE Trans. Medical Imaging, 2001, 20(8):772~783. 被引量:1
  • 9CANDES E J,DONOHO D L.Ridgelets:a key to higher-dimensional intermittency Phil[J].Trans R Soc Lond.A,1999:2495-2509. 被引量:1
  • 10CANDES E J,DONOHO D L.Recovering edges in ill-posed inverse problems:optimality of curvelet frames[J].Ann Statist,2002,30:784-842. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部