期刊文献+

一种求解TSP问题的混合算法 被引量:4

A hybrid algorithm for the traveling salesman problem
下载PDF
导出
摘要 结合粒子群算法、蚁群算法、重力搜索算法提出了一种新的混合算法——TSP-GPAA.该算法将粒子群算法和重力搜索算法加入到蚁群算法中,利用粒子群算法的全局搜索能力解决了蚁群算法的初始信息素匮乏的问题,并且重力搜索算法将粒子群算法和蚁群算法参数进行优化,明显提高了蚁群算法的优化性能.实验表明新算法对于解决TSP问题是有效的. The TSP problem is very important because of its theoretical and practical significance.In this paper,a computationally effective algorithm of combining ACO,PSO and GSA is proposed for solving the TSP problem.In this algorthm,PSO and GSA have been added to ACO.The PSO algorithm solved the shortage problem of the initial pheromone towards ACO.The GSA has been used to choose the Parameters of PSO and ACO.Experimental results show that the proposed algorithm for solving the TSP problem is effective and efficient.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期60-64,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(61070084 60573067 60803102)
关键词 蚁群算法 粒子群算法 重力搜索算法 旅行商问题 ant colony algorithm particle swarm optimization gravitation search algorithm TSP
  • 相关文献

参考文献13

  • 1FORGEL D, APPLYING B. Evolutionary programming to selected traveling salesman problem[J].Cybernetics and System, 1993,24:27-36. 被引量:1
  • 2GREFENSTETTE J J. Genetic algorithms for the traveling salesman problems[C]//Proceedings of an International Conference on Genetic Algorithms and Their Applications,Pittsburgh, USA: 1985..160-168. 被引量:1
  • 3FEI LIU,GUANGZHOU ZENG. Study of genetic algorithm with reinforcement learning to solve the TSP[J]. Expert Systems with Applications, 2009,5 : 6995-7001. 被引量:1
  • 4ANDISHEH ALIMORADI, ALI MORADZADEH, REZA NADERI, et al. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks [J]. Tunnelling and Underground Space Technology, 2008, 11:711-717. 被引量:1
  • 5SHI X H, LIANG Y C, et al. Particle swarm optimization-based algorithms for TSP and generalized TSP[J]. Information Processing Letters, 2007,8: 169-176. 被引量:1
  • 6谷文祥,苏卫华,刘晓龙.构建园区网健壮体系的比较研究[J].东北师大学报(自然科学版),2010,42(1):47-52. 被引量:3
  • 7ANGEL1NE P J. Using selection to improve particle swarm optimization[C]//IEEE International Conference on Evolutionary Computation, Alaska : Anchorage, 1998,5 : 4-9. 被引量:1
  • 8KLAUS MEER. Simulated annealing versus metropolis for a TSP instance[J]. Information Processing Letters, 2007, 12: 216- 219. 被引量:1
  • 9AHMED AL-ANI. Feature subset selection using ant colony optimization[J].International Journal of Computational Intelligence, 2006: 53 58. 被引量:1
  • 10吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247

二级参考文献14

  • 1马燕,范植华.Web/Portal认证技术研究[J].微电子学与计算机,2004,21(8):76-79. 被引量:13
  • 2秦刘,智英建,贺磊,明青.802.1x协议研究及其安全性分析[J].计算机工程,2007,33(7):153-154. 被引量:20
  • 3康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997.. 被引量:1
  • 4XIAO X,NI M.Intemet QoS:a big picture[J].IEEE Netwok,1999,13(2):8-18. 被引量:1
  • 5MYKONIATI E,CHARALAMPOUS C,GEORGATSOS P,et al.Admission control for providing QoS in DiffServ lP networks:the TEQUILA approach[J].IEEE Communications Magazine,2003,41(1):38-44. 被引量:1
  • 6GARCES-ERICE L,BIERSACK E W,ROSS K W,et al.Hierarchical peer-to-peer systems[J].Parallel Prcessing Letters,2003,13(4):643-657. 被引量:1
  • 7TRIMINTXIOS P,ANDRIKOPOULOS L,PAVLOU,et al.Management and control architecture for providing IP differentiated services in MpLS-based networks[J].IEEE Communications Magazine,2001,39(5):80-88. 被引量:1
  • 8LUCA DERI.Network mannagement for the 90s[C/OL].Proceedings of the ECOOP'96 Workshop on System and Network Management,Linz Austria,[1996-12-20].http://luca.ntop.org. 被引量:1
  • 9Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页 被引量:1
  • 10Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页 被引量:1

共引文献248

同被引文献45

  • 1郭文忠,陈国龙.求解TSP问题的模糊自适应粒子群算法[J].计算机科学,2006,33(6):161-162. 被引量:25
  • 2陈文兰,戴树贵.旅行商问题算法研究综述[J].滁州学院学报,2006,8(3):1-6. 被引量:26
  • 3王锡淮,郑晓鸣,肖健梅.求解约束优化问题的人工鱼群算法[J].计算机工程与应用,2007,43(3):40-42. 被引量:23
  • 4Meer K. Simulated Annealing Versus Metropolis for a TSP In- stance[J]. Information Processing Letters, 2007,12 : 216 219. 被引量:1
  • 5Shi X H, Liang Y G, Lee H P, et al. Particle Swarm Optirniza tion-based Algorithms for TSP and generalized TSP [J]. Infor- mation Processing Letters, 2007,8 : 169-176. 被引量:1
  • 6Venter Sobieszczanski-sobieski J. Particle swarm optimization [J]. AIAA Journal, 2003,41(8) : 1583 1589. 被引量:1
  • 7Dorigo M, Birattari M, Stutzle T. Ant Colony Optimization[J ]. Computational Intelligence Magazine, 200,61 (4) : 28-39. 被引量:1
  • 8Misevicius A. A tabu search algorithm for the quadratic assign ment problem [J]. Computational Optimization and Applica- tions, 2005(30): 95-111. 被引量:1
  • 9Eberhart R, Shi Yu-hui. Particle swarm optimization.. Develop- ments applications and resources [C]//Proc IEEE Int Conf on Evolutionary Computation. Seoul 2001 :81 86. 被引量:1
  • 10Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Perth,Australia:IEEE Piscataway,1995:1942-1948. 被引量:1

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部