期刊文献+

基于贝叶斯模型加权平均方法的水文模型不确定性分析 被引量:50

Uncertainty analysis of hydrological modeling using the Bayesian Model Averaging Method
下载PDF
导出
摘要 贝叶斯模型加权平均(BMA)方法是通过综合几个模型预报值的后验分布来推断预报量的更可靠概率分布分析工具。它不仅能提供一个综合的预报值,还能提供一个综合的预报区间。本文采用3个水文模型,统一用SCE-UA算法率定参数,得到3组不同的预报值用于BMA方法的综合,着重分析比较BMA和单个模型的预报不确定性区间,来检验贝叶斯模型加权平均方法是否能提高预报的可靠性。结果表明,BMA方法不仅能提高预报精度,还能推求出性质更为优良的预报区间,提高预报的可靠性。 Bayesian Model Averaging(BMA) method is a tool to infer the statistical distribution of a quantity to be predicted as the mixture of a set of individual prediction distributions,with each individual prediction distribution constructed on the basis of the performance of each different model.It can combine the forecasts of different models together to generate a new forecast,and it can also provide the predication interval.In this paper,three hydrological models are calibrated by SCE-UA method to provide three different forecasts for BMA combination,and the research focus in this study is shifted onto the comparison of the prediction uncertainty interval generated by the BMA with that of each individual model,in order to see if the BMA can improve the prediction reliability.It is found that the BMA method can not only improve the flow prediction efficiency,but also can derive more accurate prediction interval to improve the reliance of the prediction.
出处 《水利学报》 EI CSCD 北大核心 2011年第9期1065-1074,共10页 Journal of Hydraulic Engineering
基金 国家自然科学基金(51079098) 国家自然科学基金重点项目(40730632) 中央高校基本科研业务费专项资金资助
关键词 水文模型不确定性 贝叶斯模型加权平均(BMA) 预报区间 hydrological modeling uncertainty Bayesian Model Averaging(BMA) Prediction interval
  • 相关文献

参考文献23

  • 1袁作新主编..流域水文模型[M].北京:水利电力出版社,1990:198.
  • 2胡和平,田富强.物理性流域水文模型研究新进展[J].水利学报,2007,38(5):511-517. 被引量:36
  • 3Reid D J. Combing three estimates of gross domestic products[J] . Economiea, 1968, 35 : 431-444. 被引量:1
  • 4Bates J M, Granger C W J . The combination of forecasts [J] . Operational Research Quarterly, 1969, 20: 451-468. 被引量:1
  • 5Dickinson J P. Some statistical results in the combination of forecast[J] . Operational Research Quarterly, 1973, 24(2) : 253-260. 被引量:1
  • 6Shamseldin A Y, O' Connor K M, Liang G C. Methods for combining the outputs of different rainfall-runoff mod- els[J] . Journal of Hydrology, 1997, 197: 203-229. 被引量:1
  • 7李向阳,程春田,林剑艺.基于BP神经网络的贝叶斯概率水文预报模型[J].水利学报,2006,37(3):354-359. 被引量:40
  • 8Xiong L, Shamseldin A Y, O' Connor K M. A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system[J] . Journal of Hydrology, 2001, 245 : 196-217. 被引量:1
  • 9Duan Q, Ajami N K, Gao X, Sorooshian S. Muhi-model ensemble hydrologic prediction using Bayesian model averaging[J] . Advances in Water Resources, 2007, 30(5) : 1371-1386. 被引量:1
  • 10Zhang X, Srinivasan R, Bosch D. Calibration and uncertainty analysis of the SWAT model using Genetic Algo- rithms and Bayesian Model Averaging [ J ] . Journal of Hydrology, 2009, 374 : 307-317. 被引量:1

二级参考文献89

共引文献166

同被引文献551

引证文献50

二级引证文献344

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部