期刊文献+

原子质量比对一维Fibonacci链热传导性质的影响

Influence of ratio of atomic mass on heat conduction in one-dimensional Fibonacci chain
下载PDF
导出
摘要 用传输矩阵的方法,研究一维Fibonacci链中2种不同原子的原子质量比对其热传导性能(透射系数及热导率)的影响。研究结果表明:随着原子质量比的增大,高频区域的透射系数减小,透射谱向低频方向移动;同时,原子质量比越大,同样大小的体系对应的热导率越小,当原子质量比足够大时,热导率会趋近0 W/(m.K)。在热导率与频率平方的关系曲线中,热导率随频率平方呈现台阶式缓慢上升的趋势,且在高频端趋于某一稳定值。 By making use of the method of transfer matrix,the behaviors of heat conduction in one-dimensional Fibonacci chain under the influence of the ratio of atomic mass(including transimission coefficient and thermal conductivity) was studied.The results show that:With the increase of the ratio of atomic mass,transmission coefficient of the high-frequency region decreases,and the transmission spectrum moves to the lower frequency region.Meanwhile,with the increase of the ratio of atomic mass,the thermal conductivity of systems decreases.When the ratio of atomic mass is large enough,the thermal conductivity of systems will tend to 0 W/(m·K).In the figure of thermal conductivity and frequency squared,the thermal conductivity shows a slowly increasing trend in the way of steps with the increase of frequency squared,and tends to be a certain value in the high-frequency region.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第8期2351-2355,共5页 Journal of Central South University:Science and Technology
基金 中国高等学校博士点专项科研基金资助项目(20070533075) 湖南省科技计划项目(2009FJ3004)
关键词 传输矩阵 透射系数 振动局域态 热传导 transfer matrix transmission coefficient phonon localization of vibration state heat conductivity
  • 相关文献

参考文献26

  • 1Lepri S, Livi R, Politi A. Thermal conduction in classical low-dimensional lattices[J]. Physics Reports, 2003, 377(1): 1-80. 被引量:1
  • 2Gillan M J, Hokkiway R W. Transport in the Frenkel-Kontorova model II: Thermal conductivity[J]. J Phys C: Solid State Physics, 1985, 18(30): 5705-5720. 被引量:1
  • 3Payton D N, Rich M, Visscher W M. Lattice thermal conductivity in disordered harmonic and anharmonic crystal models[J]. Physics Review, 1967, 160(3): 706-711. 被引量:1
  • 4Gendenmen O V, Savon A V. Normal heat conductivity of the one-dimensional lattices with periodic potential of nearest-neighbor interaction[J]. Physics Review Letter, 2000, 84(11): 2381-2384. 被引量:1
  • 5Lepri S, Livi R, Politi A. Heat conduction in chains of nonlinear oscillators[J].Physics Review Letter, 1997, 78(10): 1896-1899. 被引量:1
  • 6Hatano T. Heat conduction in the diatomic Toda lattice revisited[J]. Physics Review E, 1999, 59(1): R1-R4. 被引量:1
  • 7Mareschar M, Amella L A. Thermal conductivity in a one-dimensional Lennard-Jones chain by Molecular dynamics[J]. Physics Review A, 1988, 37(6): 2189-2196. 被引量:1
  • 8Jachson E A, Mistrion D. Thermal conductivity of one- and two-dimensional lattices[J]. Phys: Condens Matter, 1989, 1(7): 1223-1238. 被引量:1
  • 9Maruyama S. A molecular dynamics simulation of heat conduction in finite length SWNTs[Y]. Physics B, 2002, 323: 193-195. 被引量:1
  • 10Savin A V, Zoiotaryuk A V. Heat conduction in one-dimensional systems with hard-point interparticle interactions[J]. Physics Review Letter, 2002, 88(15): 154301-4. 被引量:1

二级参考文献12

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部