期刊文献+

正态分布连续体结构可靠性拓扑优化设计 被引量:6

Reliability-Based Topological Optimization Design of Normal Distribution Continuum Structure
下载PDF
导出
摘要 对具有随机参数的连续体结构进行了拓扑优化设计,并考虑了随机参数满足正态分布的可靠性约束,获得优化结构的同时保证了结构的可靠度.根据可靠性理论的一次二阶矩方法,利用随机有限元求解了连续体结构的可靠度,将隐式的可靠度约束转化为等价的常规约束.将模式识别技术的K邻近(KNN)方法引入到连续体结构拓扑优化设计领域,对连续体结构进行了拓扑优化设计.根据该设计方法给出了计算示例,结果表明该设计计算方法是可行的,为工程设计提供了理论依据. The continuum structure with stochastic parameters was designed by topological optimization.The reliability constraint of stochastic parameters under normal distribution was also considered to guarantee the reliability.Based on the first-order second-moment method of the reliability theory,the stochastic finite element method is used to analyze the continuum structural reliability.The implicit reliability constraint is transformed into the equal conventional constraint.The K-nearest neighbor method of the pattern recognition technique is introduced to the design domain of the continuum structure to carry on the topology optimization design.Finally,several calculation examples prove that the design method is feasible,and proves theory basis for engineering design.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期1304-1307,共4页 Journal of Northeastern University(Natural Science)
基金 长江学者和创新团队发展计划项目(IRT0816) "高档数控机床与基础制造装备"科技重大专项(2010ZX04014-014) 国家自然科学基金资助项目(50875039) "十一五"国家科技支撑计划项目(2009BAG12A02-A07-2)
关键词 连续体 结构优化 拓扑优化 K邻近 模式识别 可靠度 continuum structural optimization topological optimization K-nearest neighbor pattern recognition reliability
  • 相关文献

参考文献13

二级参考文献26

  • 1刘正兴,正劲松.随机有限元在结构可靠性分析中的应用[J].上海交通大学学报,1994,28(1):32-40. 被引量:19
  • 2Shekhar S, Huang Y. Co-location Rules Mining.. A Summary of Results [C]. The 7th International Symposium on Spatio and Temporal Database (SSTD), New York, 2001 被引量:1
  • 3Morimoto Y. Mining Frequent Neighboring Class Sets in Spatial Databases[C]. The 7th ACM SIGKDD International Conf on Knowledge Discovery and Data Mining, San Franciscc, California, 2001 被引量:1
  • 4Huang Yan, Shashi S, Xiong Hui. Discovering Colocation Patterns from Spatial Datasets: A General Approach[J]. Transactions on Knowledge and Data Engineening, 2004,16 (6) : 被引量:1
  • 5Yoo J, Shekhar S. A Partial Join Approach for Mining Co-location Patterns[C]. The 12nd Annual ACM International Workshop on Geographic Information Systems ( ACM-GIS), Washington D C, USA, 2004 被引量:1
  • 6Yoo J, Shekhar S, Celik M. A Join-less Approach for Co-location Pattern Mining: A Summary of Results[C]. The 5th IEEE International Conference on Data Mining(ICDM'05), Houston, USA, 2005 被引量:1
  • 7Huang Yan, Pei Jian, Xiong Hui. Mining Co-Location Patterns with Rare Events from Spatial Data Sets[J]. GeoInformatica, 2006(10):239-260 被引量:1
  • 8Cover T M, Hart P E. Nearest Neighbor Pattern Classification [ J ]. Knowledge Based Systems, 1995, 8(6): 373-389 被引量:1
  • 9Zhou Shuigeng, Zhao Yue, Guan Jihong, et al. A Neighborhood-based Clustering Algorithm [M]. Berlin/Heidelberg : Springer, 2005 被引量:1
  • 10Xiong Hui, Shekhar S, Huang Yan, et al. A Framework for Discovering Co-location Patterns in Data Sets with Extended Spatial Objects[C]. The 4th SIAM International Conference on Data Mining, Florida, USA, 2004 被引量:1

共引文献204

同被引文献52

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部