期刊文献+

动态STDP突触系统模型设计与验证 被引量:1

Design and Verification of Dynamic Synaptic Modeling with Spike-time Dependent Plasticity
下载PDF
导出
摘要 神经突触的STDP(Spike Timing Dependent Plasticity)机制被认为是脑神经网络中最重要的机制之一,最有效的模拟STDP神经突触的方法是建立神经突触的离子通道的动力学模型。目前的STDP突触系统建模均存在一定的缺陷,不能很好地解释STDP机制的细胞分子生物反应原理或者得到STDP的时间非对称实验结果。提出一种新型的STDP神经突触系统模型,通过两个重要的输入信号用以验证该模型。仿真和验证结果表明,所提出的模型不仅反应了STDP神经突触实际的生理学机理,而且还得到STDP神经突触的时间非对称结果。 STDP (Spike Timing Dependent Plasticity) mechanism of synapses is considered to be one of the most important mechanisms of neural network, and the most effective method of emulated STDP synapse is to establishing the kinetic model of synaptic ion channels. However, most of the existing modeling of STDP synaptic mechanism have some certain defects, they either can't well explained the biomolecular reactions at a cellular level which is responsible for STDP, or acquired asymmetric STDP responses. A new modeling of STDP synaptic system was proposed. Two significant synaptic inputs were designed which were used to make the verification of the system. The simulation and verification results show that the new modeling not only reflects the actual physiological mechanism of STDP synapses, but also asymmetric STDP responses are obtained.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2234-2238,共5页 Journal of System Simulation
基金 国家自然科学基金-青年科学基金项目(61006027)
关键词 突触可塑性 谷氨酸信号 后向传播树突信号 非对称结果 synaptic plasticity glutamate signal back propagation dendrite signal asymmetric responses
  • 相关文献

参考文献13

  • 1S Song, K D Miller, L F Abbott. Competitive hebbian learning though spike-timing dependent synaptie plasticity, [J]. Nature Neuroscience (S1097-6256), 2000, 3(9): 919-926. 被引量:1
  • 2Yan Liu, Liujun Chen, Jiawei Chen, Jiaxin Cui, Fukang Fang. Burst Spike Trains Recognition Based on the Dynamic Properties of Hodgkin Huxley Neurons and Synapses [J]. Natural Computation, (S 1567-7818), 2009, 1 (8): 404-407. 被引量:1
  • 3Y Dan, M Poo. Spike Timing-Dependent Plasticity of Neural Circuits, [J]. Neuron (S0896-6273), 2004, 44(1): 23-30. 被引量:1
  • 4Lee C-C, Poon C-S, G J McRae. Kinetic modeling of Amyloid Fibrillation and Synaptic Plasticity as Memory Loss and Formation Mechanisms. [D]. USA: Massachusetts Institute of Technology, 2008: 81-107. 被引量:1
  • 5Shouval H Z, M F Bear, L N Cooper. A unified model of NMDA receptor dependent bidirectional synaptic plasticity [J]. Proc Natl Acad Sci USA (S0027-8424), 2002, 99(16): 10831-10836. 被引量:1
  • 6Rast A D, Galluppi F, Jin X, Furber S B. The Leaky Integrate-and- Fire neuron: A platform for synaptic model exploration on the SpiNNaker chip [J]. Neural Networks (S0893-6080), 2010, 23(7): 1-8. 被引量:1
  • 7Mak T S T, Rachmuth G, Kai-Pui Lam, Chi sang Poon. A component-Base FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations. [J]. Neural Systems and Rehabilitation Engineering (S 1534-4320), 2006, 14(4): 410-418. 被引量:1
  • 8Yu T, Cauwenberghs G. Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-huxley neurons [J]. Engineering in Medicine and Biology Society, 2009, 58(9): 3335-3338. 被引量:1
  • 9Rachmuth G, C Poon. Transistor analogs of emergent iono-neuronal dynamics [J]. HFSP Journal (S1955-2068), 2008, 2(3): 156-166. 被引量:1
  • 10Benda J. Single Neuron Dynamics Models Linking Theory and Experiment [D]. Berlin, Germany: Universitat zu Berlin, 2002: 177-185. 被引量:1

同被引文献8

  • 1吕永浦,冯大政.新IF模型及其学习规则研究[J].系统工程与电子技术,2006,28(4):582-586. 被引量:2
  • 2Abbott L. F. and Sacha B. [J].Nelson, "Synaptic plasticity: taming the beast," nature neuroscience supplement., 2000,11(3):1178-1183. 被引量:1
  • 3McCulloch W. s. and Pitts. W. "A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics" [M].1943-127-147. 被引量:1
  • 4Gerstner and Kistler, "Spiking Neuron Models. Single Neurons, Populations, Plasticity," [M].Cambridge University Press., 2002. 被引量:1
  • 5Muballit Mitte, "A simple neuron model - The integrate and fire neuron," http://www.dreamincode.net/forums/ topic/72868-a-simple-neuron-model-the-integrate-and-fire -neuron. 被引量:1
  • 6G.Indiveri, "Modeling selective attention using a neuromorphic analog VLSI device," Neural Computat., vol. 12, pp. 2857-2880, 2000. 被引量:1
  • 7Joshua Jen C. Monzon, "Analog VLSI circuit design of spike-timing-dependent synaptic plasticity" [J].2000. 被引量:1
  • 8张莉,冯大政.一种简化的整合-激发模型分析[J].计算机仿真,2009,26(8):147-150. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部