期刊文献+

考虑集中质量的旋转悬臂梁的动力学建模与频率分析 被引量:5

Dynamic Modeling and Frequency Analysis of a Rotating Cantilever Beam with a Concentrated Mass
下载PDF
导出
摘要 对考虑集中质量的旋转悬臂梁的刚柔耦合动力学建模和频率特性进行了研究。在精确描述柔性梁非线性变形基础上,利用Lagrange方程和假设模态法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出考虑"动力刚化"项的动力学方程。利用狄拉克δ函数,将任意位置的集中质量纳入梁的横向振动动力学方程,避免增加系统自由度。引入无量纲变量,对横向振动动力学方程做无量纲化处理,通过数值计算分析集中质量对柔性梁横向弯曲振动固有频率的影响。研究发现,随着集中质量比率的增大,第1阶固有频率轨迹线在下降;悬臂梁横向弯曲振动的固有频率并非随集中质量位置比率单调变化。 The rigid-flexible coupling dynamics and frequency analysis of a rotating cantilever beam with a concentrated mass located in an arbitrary is studied in this paper.Based on the accurate description of non-linear deformation of the flexible beam,the governing equations with the dynamic stiffening terms for this system are derived from both Lagrange′s equations and assumed mode method,taking the second-order coupling quantity of axial displacement caused by transverse displacement of the beam into account.For modeling of the concentrated mass,the Dirac delta function is introduced to avoid increasing the degrees of freedom of the system.The chord-wise equation is transformed into dimensionless form in which dimensionless parameters are identified.The effects of the concentrated mass for natural frequencies in chord-wise bending vibration are investigated through numerical simulation.The results show that the first-order natural frequency loci can be lowered by increasing the concentrated mass ratio,and the natural frequencies vary as the concentrated mass location ratio varies.
出处 《机械科学与技术》 CSCD 北大核心 2011年第9期1471-1476,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10772085) 江苏省自然科学基金项目(BK2007205) 江苏省青蓝工程资助项目 南京工程学院科研基金项目(KXJ08102)资助
关键词 悬臂梁 集中质量 刚柔耦合 频率分析 横向弯曲振动 cantilever beam concentrated mass rigid-flexible coupling frequency analysis lateral bending vibration
  • 相关文献

参考文献15

  • 1Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attanched to a moving base [ J ]. Journal of Guidance, 1987,10(2) :139 ~ 151. 被引量:1
  • 2Bloch A M. Stability analysis of a rotating flexible system [ J ]. Acta application Mathematics, 1989,15:211 ~ 234. 被引量:1
  • 3Choura S, et al. On the modeling and open-loop control of a rotating thin flexible beam [ J ]. Journal of Dynamic System, Measurement, and Control, 1991,113 ( 1 ) :26 ~ 33. 被引量:1
  • 4Mayo J, Dominguez J, Shabana A A. Geometrically nonlinear formulations of beams in flexible multibody dynamics [ J ]. Journal of Vibration and Acoustics, 1995,117:501 -509. 被引量:1
  • 5Zhang D J, Huston R L. On dynamic stiffening of flexible bodies having high angular velocity[ J]. Meehaaim of Structures and Machines, 1996,24(3) :313 ~329. 被引量:1
  • 6Yoo H H, Ryan R, Scott R. Dynamics of flexible beams undergoing overall motions [ J]. Journal of Sound and Vibration, 1995,10 : 139 ~ 148. 被引量:1
  • 7蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:55
  • 8章定国,余纪邦.作大范围运动的柔性梁的动力学分析[J].振动工程学报,2006,19(4):475-480. 被引量:23
  • 9肖建强,章定国.转动刚体上柔性悬臂梁的动力学建模与仿真[J].机械科学与技术,2005,24(1):45-47. 被引量:4
  • 10Southwell R ,. Cough F. The Free Transverse Vibration of Airscrew Blades[R]. British A. R. C. Report and Memoranda 1921,766. 被引量:1

二级参考文献43

  • 1蔡国平,洪嘉振.非惯性系下柔性悬臂梁的振动主动控制[J].力学学报,2003,35(6):744-751. 被引量:7
  • 2潘振宽,洪嘉振.刚-弹惯性耦合下变形体动力学响应分析[J].应用力学学报,1994,11(1):41-46. 被引量:8
  • 3洪嘉振 贾书惠.闭环柔性多体系统单向递推模型的切断铰约束方程.多体系统动力学与控制[M].北京:北京理工大学出版社,1996.5-9. 被引量:5
  • 4Barbieri E, et al. Unconstrained and constrained mode expansions for a flexible slewing link[ J]. Journal of Dynamic Systems, Measurement, and Control, 1988,110(4). 被引量:1
  • 5Chait Y,et al. A Natural modal expansion for the flexible robot ann problem via a self-adjoint formulation[ J]. IEEE Transaclions on Robotics and Automation, 1990,6(5 ). 被引量:1
  • 6Morg uul OO Orientation and stabilization of a flexible beam attached to a rigid body: planar motion[J]. IEEE Transactions on Automatic Control, 1991, 36(8): 953-962. 被引量:1
  • 7Choura S, et al. On the modeling, and open-loop control of a rotatlng thin flexible beam [ J]. Journal of Dynamic Systems,Measurement, and Control, 1991, 113 ( 1 ). 被引量:1
  • 8Kane T R, et al. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance,1987,10(2). 被引量:1
  • 9Yigit A, et al. Flexural motion of a radially rotating beam attached to a rigid body [ J]. Journal of Sound and Vibration,1988,121 (2). 被引量:1
  • 10Chait Y,et al. A Natural modal expansion for the flexible robot arm problem via a self-adjoint formulation[ J]. IEEE Transactions on Robotics and Automation, 1990,6(5 ). 被引量:1

共引文献71

同被引文献27

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部