期刊文献+

基于自适应分数阶微分的Harris角点检测算法 被引量:5

Harris corner detection algorithm based on adaptive fractional differential
下载PDF
导出
摘要 针对Harris算法在对纹理复杂程度高的图像进行角点检测时会出现大量伪角点,以及分数阶微分应用到图像处理中需要人为地指定阶数的缺点。分析了伪角点大量产生的原因,并提出以分数阶替换原算法中的整数阶对图像进行微分的改进方法,以及一种以图像的分形维数作为参数来自适应地选择微分所需要的阶数的方法。从而使图像做微分运算时能更好地保留图像中的边缘信息,使分数阶微分可以应用于视频目标追踪、视频稳像等实时性要求较高的场合。实验表明,改进算法在进行角点检测时具有更高的精确度。 False corners will emerge in the corner detection of the image with high texture complexity by Harris algorithm,and when fractional differential is applied to image processing,the order needs to be specified by human.This paper analyzed the reason that caused the false corners and suggested to replace the integral order in the algorithm with fractional order to operate differential coefficient so as to improve the algorithm.The paper also brought forward an approach regarding fractal dimension as a parameter which came from the order in choosing differential coefficient.So the marginal information of image can be saved when operating the differential coefficient of the image,and this approach makes the fractional differential be applied in occasions with high real-time requirements such as video target tracing and video image stabilization.The tests show that the modified algorithm has higher precision in the corner detection.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2702-2704,2741,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61004112) 中国博士后科学基金资助项目(20080430750) "211工程"三期建设项目(S-10218)
关键词 分数阶微分 HARRIS算法 角点检测 分形维数 纹理复杂度 fractional differential Harris algorithm corner detection fractal dimension texture complexity
  • 相关文献

参考文献13

  • 1MORAVEC H P . Towards automatic visual obstacle avoidance [ C]// Proceedings of International Joint Conference on Artificial In- telligence. San Francisco: Morgan Kaufmann, 1977:584-590. 被引量:1
  • 2HARRIS C, STEPHENS M. A combined comer and edge detector [C]// Proceedings of the 4th Alvey Vision Conference. Manches- ter: [s.n.], 1988: 147-151. 被引量:1
  • 3SMITH S M, BRADY M. SUSAN -- A new approach to low level image processing [ J]. International Journal of Computer Version, 1997, 23(1): 45-78. 被引量:1
  • 4SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interesting point detectors [ J]. International Journal of Computer Vision, 2000, 37(2): 151-172. 被引量:1
  • 5陈白帆,蔡自兴.基于尺度空间理论的Harris角点检测[J].中南大学学报(自然科学版),2005,36(5):751-754. 被引量:79
  • 6MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points [ C]//Proceedings of the 8th International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2001:525 -531. 被引量:1
  • 7SARKAR N, CHAUDHURI B B. An efficient differential box- counting approach to compute fractal dimension of image [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24 (1): 115-120. 被引量:1
  • 8杨柱中,蒲亦非,廖科.分数阶微分原理及其在现代信号分析与处理中的应用[M].北京:科学出版社,2010. 被引量:2
  • 9PU YIFEI , ZHOU JILIU , YUAN XIAO . Fractional differential mask: a fractional differential-based approach for muhiscale texture enhancement [ J]. IEEE Transactions on Image Processing, 2010, 19(2): 491-511. 被引量:1
  • 10杨柱中,周激流,黄梅,晏祥玉.基于分数阶微分的边缘检测[J].四川大学学报(工程科学版),2008,40(1):152-157. 被引量:51

二级参考文献39

  • 1蒲亦非,袁晓,廖科,周激流,王永德.连续子波变换数值实现中尺度采样间隔的确定[J].四川大学学报(工程科学版),2004,36(6):111-116. 被引量:7
  • 2蒲亦非,袁晓,廖科,陈忠林,周激流.现代信号分析与处理中分数阶微积分的五种数值实现算法[J].四川大学学报(工程科学版),2005,37(5):118-124. 被引量:31
  • 3蒲亦非,袁晓,廖科,周激流.一种实现任意分数阶神经型脉冲振荡器的格形模拟分抗电路[J].四川大学学报(工程科学版),2006,38(1):128-132. 被引量:17
  • 4Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381. 被引量:1
  • 5Pikaz A, Dinstein I. Using simple decomposition for smoothing and feature point detection of noisy digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8): 808-813. 被引量:1
  • 6Harris C, Stephens M. A combined corner and edge detector[A]. Matthews M M. Proceedings of the Fourth Alvey Vision Conference[C]. Manchester: the University of Sheffield Printing Unit, 1988. 147-151. 被引量:1
  • 7Deriche R, Giraudon G. A computational approach for corner and vertex detection[J]. International Journal of Computer Vision, 1993, 10(2): 101-124. 被引量:1
  • 8Baker S, Nayar S K, Murase H. Parametric feature detection[J]. International Journal of Computer Vision, 1998, 27(1): 27-50. 被引量:1
  • 9Parida L, Geiger D, Hummel R. Junctions: Detection, classification, and reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 687-698. 被引量:1
  • 10Schimid C, Mohr R, Bauckhage C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172. 被引量:1

共引文献193

同被引文献48

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部