摘要
本文研究了一类非线性微分方程的解的增长级的问题.利用亚纯函数的Nevanlinna值分布理论和Wiman-Valiron整函数理论的方法,获得了比以往文献更为精确,更为一般的结论,推广了Gol’dberg,Barsegian,Hayman以及Korhonen等作者的一些结果.
In this paper,we study the problem of growth order of solutions of a type of non-linear general differential equations.By using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron's entire function theory,we obtain a result which is more precise and more general than the previous ones,and extends some results of the growth order of solutions of algebraic differential equations on Gol'dberg,Barsegian,Hayman and Korhonen,etc.
出处
《数学杂志》
CSCD
北大核心
2011年第5期785-790,共6页
Journal of Mathematics
基金
Supported by the Natural Science Foundation of China(10471065)
the Natural Science Foundation of Guangdong Province(04010474)
关键词
增长级
代数微分方程
亚纯函数
growth order
algebraic differential equations
meromorphic function