期刊文献+

复非线性代数微分方程解的增长级(英文) 被引量:1

GROWTH OF SOLUTIONS OF COMPLEX NON-LINEAR ALGEBRAIC DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 本文研究了一类非线性微分方程的解的增长级的问题.利用亚纯函数的Nevanlinna值分布理论和Wiman-Valiron整函数理论的方法,获得了比以往文献更为精确,更为一般的结论,推广了Gol’dberg,Barsegian,Hayman以及Korhonen等作者的一些结果. In this paper,we study the problem of growth order of solutions of a type of non-linear general differential equations.By using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron's entire function theory,we obtain a result which is more precise and more general than the previous ones,and extends some results of the growth order of solutions of algebraic differential equations on Gol'dberg,Barsegian,Hayman and Korhonen,etc.
机构地区 暨南大学数学系
出处 《数学杂志》 CSCD 北大核心 2011年第5期785-790,共6页 Journal of Mathematics
基金 Supported by the Natural Science Foundation of China(10471065) the Natural Science Foundation of Guangdong Province(04010474)
关键词 增长级 代数微分方程 亚纯函数 growth order algebraic differential equations meromorphic function
  • 相关文献

参考文献3

二级参考文献14

  • 1[1]Hayman, W.K., Metomorphic functions [M]. Oxford: Oxford University Press, 1964. 被引量:1
  • 2[2]He Yuzan and Xiao Xiuzhi, Algebroid Functions and ordinary differential equations[M]. Beijing:Science Press, 1988. 被引量:1
  • 3[3]Sons, L.R., Deficiencies of monomials [J]. Math. Z, 1969, 111:53-68. 被引量:1
  • 4[4]Toda, N., On the growth of non-admissible solutions of the differential equation (w′)n=in∑aj(z)wj [J]. Kodai Math. J., 1984, 7:293-303. 被引量:1
  • 5Mokhon’’’’ko,A .Z,Mokhon’’’’ko ,V .D.Estimatesforthenevanlinnacharacteristicsofsomeclassesofmeromorphicfounctionsandtheirapplicationstodifferenfialequations[].SiberianMath J ( ).(1974) 被引量:1
  • 6HeYuzan,XiaoXiuzhi.AlgebroidFunctionsandOrdinaryDifferentialEquations. . 1 988 被引量:1
  • 7HeYuzan,XiaoXiuzhi.Admissiblesolutionsandordinarydifferentialequations[].Contemp Math ( ).(1983) 被引量:1
  • 8Toda ,N,Kato,M.Onsomealgebraicdifferentialequationswithadmissiblealgebroidsolutions[].ProcJapanAcad SerA ( ).(1985) 被引量:1
  • 9Gackstatter,F,Laine ,I.ZurTheoriedergewohnlichendifferentialgleichungenimkomplexen[].Ann Polon Math ( ).(1980) 被引量:1
  • 10Yosida,K.Onalgebroid solutionsofordinarydifferentialequations[].JapanJMath ( ).(1934) 被引量:1

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部